教育巴巴 > 高中教案 > 数学教案 >

高中集合数学教案

时间: 新华 数学教案

编写教案的过程是教师不断学习和成长的过程,可以帮助教师提高专业素养和教学能力。好的高中集合数学教案是怎样的?这里给大家提供高中集合数学教案,供大家参考。

高中集合数学教案篇1

[课程目标]

1.掌握集合的两种表示方法(列举法和描述法);

2.掌握用区间表示数集;

3.能够运用集合的两种表示方法表示一些简单集合,正确运用区间表示一些数集。

知识点一列举法表示集合

[填一填]

列举法

把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法。

[答一答]

1.什么类型的集合适合用列举法表示?

提示:当集合中的元素较少时,用列举法表示方便。

2.用列举法表示集合的优点与缺点是什么?

提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的属性。

知识点二描述法表示集合

[填一填]

描述法

(1)集合的特征性质:

一般地,如果属于集合A的任意一个元素-都具有性质p(-),而不属于集合A的元素都不具有这个性质,则性质p(-)叫做集合A的一个特征性质。

(2)特征性质描述法:

集合A可以用它的特征性质p(-)描述为{-p(-)},这种表示集合的方法,叫做特征性质描述法,简称描述法。

[答一答]

3.什么类型的集合适合用描述法表示?

提示:描述法多用于集合中的元素有无限多个的无限集或元素个数较多的有限集。

4.集合{-->3}与集合{tt>3}表示同一个集合吗?

提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合。

知识点三区间及其表示

[填一填]

研究函数常常用到区间的概念,设a、b是两个实数,且a<b,我们规定:

(1)满足a≤-≤b的全体实数-的集合简写为[a,b],称为闭区间。

(2)满足a<-<b的全体实数-的集合简写为(a,b),称为开区间。

(3)满足a≤-<b的全体实数-的集合简写为[a,b),称为半开半闭区间。

(4)满足a

高中集合数学教案篇2

各位老师你们好!今天我要为大家讲的课题是

首先,我对本节教材进行一些分析:

一、教材分析(说教材):

1.教材所处的地位和作用:

本节内容在全书和章节中的作用是:《__》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。

2.教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,

(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

3.重点,难点以及确定依据:

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点:通过突出重点

难点:通过突破难点

关键:

下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

二、教学策略(说教法)

1.教学手段:

如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。

2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

3.学情分析:(说学法)

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学

生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

最后我来具体谈谈这一堂课的教学过程:

4.教学程序及设想:

(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

(2)由实例得出本课新的知识点

(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

(7)板书

(8)布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

教学程序:

课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

高中集合数学教案篇3

近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。

一、要有明确的教学目标

教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

二、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。

三、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;四是有利于对整堂课所学内容进行回顾和小结。在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。

四、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。

五、关爱学生,及时鼓励

高中新课程的&39;宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

六、切实重视基础知识、基本技能和基本方法

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解

决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

七、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。

高中集合数学教案篇4

教学内容:习惯的养成(养成教育)

教学目标:

1.用轻松亲切的语调,让孩子们对小学生活有一个感性的认识。

2.培养卫生习惯、生活习惯、学习习惯、爱护公物的习惯。

3.通过学习,让孩子们对小学生活满怀美好的憧憬。

教学过程:

师:小朋友们好!首先祝贺小朋友们光荣地成为了一名小学生!老师看到每一个孩子的笑脸,真高兴啊,你们就像花儿一样,老师非常喜欢你们!

(在黑板上写一个大大的“聪”字)

师:认识这个字吗?

生:聪!

师:对,聪明的聪。你们想不想成为一个聪明的孩子?

生:想!

师:怎么样才能成为聪明的孩子呢?我们来看,“聪”字是由耳朵、眼睛、嘴巴,还有一个“心”字组成的。小朋友们,我们只要会用耳朵听,会用眼睛看,会用嘴巴说,再会用心去做,你就一定会是一个聪明的好孩子。你能做到吗?下面我们开始试一试啦!

首先是会用耳朵听。听老师说话要专心,不能东张西望,听同学发言,要注意听他回答对了没有,如果你还有想法,就举手说出你的想法。谁听懂了?(试问学生)

第二要会用眼睛看。你看到我们的教室干净吗?那是昨天我和曾老师花了很长时间打扫的。那绿色的很新的墙群是我和曾老师亲自粉刷的。所以,请同学们不要用手去摸,更不要用脚去踢,就像爱护我们的眼睛一样地去爱护它,谁能做得到?

第三要会用嘴巴说话。上课时,老师提问后,请你把小手举起来,回答问题要响亮,让全班小朋友都听得到,每个小朋友都要会用你的小嘴巴表达哦!

我们会用耳朵听,会用眼睛看,会用嘴巴说,是不是就很聪明了呢?不,最重要的是要会用心去听,会用心去看,会用心去说,一句话,就是做什么事都要用心去做,才是真正聪明的孩子。

聪明的孩子要做到以下几点:

一、爱护公物。学校的一草一木,一桌一椅,学校里所有的东西都要爱护。不踩花,不摘花,不踩草坪,不摘树叶,不在桌子上乱刻乱画,不在教室里追逐打闹。我们学校的操场正在施工,请小朋友们不要到操场上玩耍。

二、讲究卫生。上厕所时,不能在厕所外面随处大小便,要进到厕所里指定的位置,你能做到了吗?(课后,带队去看男女厕所的位置)在家里,每天早晚要刷牙,勤洗澡,勤换衣服,勤剪指甲。不随地吐痰,预防传染病。

三、爱惜粮食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老师想看看谁是最爱惜粮食的好孩子。(放晚学前总结)

四、排路队时要做到快、静、齐。教给大家我编的儿歌:“排路队,手牵手,不说话,排整齐。”走出校门后,如果找不到家长,不要自己回,要找到老师,或者回到校门口等家长来接。

五、我们是小学生了,不能带玩具来学校玩,也不要带钱来买零食吃。现在天气炎热,我们每天要从家里自己带来一瓶水,多喝水,既清嗓来又防病,听明白了吗?我相信我们一(7)班的小朋友一定会成为一个聪明的讲文明的小学生。

后记:今天加班打印各种材料,包括开学初的养成教案。不知不觉已到教师节。祝各位同行教师节快乐!天天开心!

高中集合数学教案篇5

教学目标

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

教学建议

教材分析

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.

教法建议

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高中集合数学教案篇6

2。2。1等差数列学案

一、预习问题:

1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。

2、等差中项:若三个数组成等差数列,那么A叫做与的,

即或。

3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。

4、等差数列的通项公式:。

5、判断正误:

①1,2,3,4,5是等差数列;()

②1,1,2,3,4,5是等差数列;()

③数列6,4,2,0是公差为2的等差数列;()

④数列是公差为的等差数列;()

⑤数列是等差数列;()

⑥若,则成等差数列;()

⑦若,则数列成等差数列;()

⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()

⑨等差数列的公差是该数列中任何相邻两项的差。()

6、思考:如何证明一个数列是等差数列。

二、实战操作:

例1、(1)求等差数列8,5,2,的第20项。

(2)是不是等差数列中的项?如果是,是第几项?

(3)已知数列的公差则

例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?

例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。

高中集合数学教案篇7

本文题目:高三数学复习教案:古典概型复习教案

【高考要求】古典概型(B);互斥事件及其发生的概率(A)

【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;

2、理解古典概型的特点,会解较简单的古典概型问题;

3、了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.

【知识复习与自学质疑】

1、古典概型是一种理想化的概率模型,假设试验的结果数具有性和性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.

2、(A)在10件同类产品中,其中8件为正品,2件为次品。从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是.

3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是。

4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,向上的两个数字之和为3的概率是.

5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是.

6、(B)若实数,则曲线表示焦点在y轴上的双曲线的概率是.

【例题精讲】

1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?

(2)甲、乙两人中至少有一人抽到选择题的概率是多少?

2、(B)黄种人群中各种血型的人所占的比例如下表所示:

血型ABABO

该血型的人所占的比(%)2829835

已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:

(1)任找一个人,其血可以输给小明的概率是多少?

(2)任找一个人,其血不能输给小明的概率是多少?

3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8的概率;(3)向上的点数之和不超过10的概率.

4、(B)将一个各面上均涂有颜色的正方体锯成(n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;

(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.

【矫正反馈】

1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是.

2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是.

3、(A)某射击运动员在打靶中,连续射击3次,事件至少有两次中靶的对立事件是.

4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率.

5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【迁移应用】

1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是.

2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为.

3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是.

4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是.

5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.

(1)若点P(a,b)落在不等式组表示的平面区域记为A,求事件A的概率;

(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率最大,求m的值.

高中集合数学教案篇8

教学目标

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议

一、知识结构

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以的图象为例让自变量互为相反数观察对应的函数值的变化规律先从具体数值开始逐渐让在数轴上动起来观察任意性再让学生把看到的用数学表达式写出来.经历了这样的过程再得到等式就比较容易体会它代表的是无数多个等式是个恒等式.关于定义域关于原点对称的问题也可借助课件将函数图象进行多次改动帮助学生发现定义域的对称性同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

高中集合数学教案篇9

分享目标:

1、通过与学生交流《课程纲要》,使学生了解本学期的课程内容、课程目标及课程评价。

2、通过了解教师对学生的评价方法,激发学生自主学习的主动性。

分享重点:

了解本学期的学习内容和评价方法。

分享难点:

通过分享《课程纲要》明确学习目标。

分享时间:一课时

分享准备:《三年级综实课程纲要》PPT

分享过程:

一、谈话导入

1、师:同学们,新年新气象,新的学期又是新的开始。本学期的第二节综实课,老师要带领大家认识一个新朋友,它就像向导一样,能够指引大家在本学期的学习中找准学习目标,理清学习内容、了解学习安排,真正成为学习的小主人,它就是课程纲要。(板书课题)

二、内容新授

1、师:怎样才能做学习的小主人呢?首先我们要了解本学期的学习内容。我们本学期将会学习那些内容呢?《课程纲要》来一一为我们介绍。

2、师:本学期我们只进行一个综合实践活动课的主题,它就是有趣的姓氏。

3、师:主题确定了,那么课下就需要你们想想,围绕这些主题可以引出什么呢?(生说)

4、师:对,是子课题。说明大家上学期上课大家认真听讲了。除了想一想可以确定哪些子课题,还要想想你准备怎样做,使用哪些方法等等。

5、师:接下来我来说说我们这学期综实课分组的问题。这学期分组,以主题确定后,你们自己找搭档,找助手,一起同心协力更好的完成各个主题活动。

6、师:本学期的课程内容大家都了解了,那本学期的评奖方式是什么呢?

①每节课课余1-3分钟,根据本节举手回答问题的次数,以及课堂表现,来老师这里为个人加分,各组组长也负责记录并统计出每星期、每个月加分最多的组员上报老师,老师会授予这些同学优秀之星的称号,获得优秀之星称号的同学会得到学习星以及才艺星的奖励。

②课前准备综实成长记录袋以及A4白纸15张,作为平时作业及记录板书内容的笔记本。老师批阅,每月月末总检,作为评分奖励的内容之一。

③平时按照老师要求,准备工具、材料,期末奖励进步奖。

三、课堂小结

师:同学们,通过对本学期《课程纲要》的学习,你是否对本学期的学习充满信心呢?老师相信,每个孩子都能成为学习的小主人。

高中集合数学教案篇10

教学目标

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养学生观察、归纳能力。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:

①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.21,2

二、1、预习内容:课本P116例2P117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中集合数学教案(优秀10篇)

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
100930