高二数学反思教案
编写教案的过程也是教师学习和成长的过程,有助于提高教师的专业水平。高二数学反思教案怎样写才正确?接下来给大家整理高二数学反思教案,希望对大家有所帮助。
高二数学反思教案篇1
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平.……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如x2-5x+6=0
中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用p,q,r,s,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“p或q”“p且q”、“非p”、“若p则q”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1)12>5;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0,则a=0.
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3写出下表中各给定语的否定语(用课件打出来).
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有n个”的否定语是“至少有n+1个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1,2.
5.课外作业:第29页习题1.61,2.
高二数学反思教案篇2
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区别与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区别与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
环节二随机变量的应用
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果
例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变
量,分别说明下列集合所代表的随机事件:
(1){X=0}(2){X=1}
(3){X<2}(4){X>0}
变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;
(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;
小结(对标)
高二数学反思教案篇3
教学目标
1.使学生了解反函数的概念;
2.使学生会求一些简单函数的反函数;
3.培养学生用辩证的观点观察、分析解决问题的能力。
教学重点
1.反函数的概念;
2.反函数的求法。
教学难点
反函数的概念。
教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。(记作A);
第二张:本课时作业中的预习内容及提纲。
教学过程
1.讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。
同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。
师:反函数的定义着重强调两点:
(1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。
师:应该注意习惯记法是由记法改写过来的。
师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。
(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。
师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)
在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的`量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。
师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。
从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。
(3)指出反函数的定义域。
下面请同学自看例1
2.课堂练习课本P68练习1、2、3、4。
3.课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。
高二数学反思教案篇4
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量abcosq叫a与b的数量积,记作a×b,即有a×b=abcosq,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.
高二数学反思教案篇5
教学目标
1、知识与技能:
(1)推广角的概念、引入大于角和负角;
(2)理解并掌握正角、负角、零角的定义;
(3)理解任意角以及象限角的概念;
(4)掌握所有与角终边相同的角(包括角)的表示方法;
(5)树立运动变化观点,深刻理解推广后的角的概念;
(6)揭示知识背景,引发学生学习兴趣;
(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。
2、过程与方法:
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的&39;判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情态与价值:
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。
教学重难点
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。
难点:终边相同的角的表示。
高二数学反思教案篇6
一、指导思想:
在学校教学工作意见指导下,在年级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。
二、教材简析
使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。
三、教学任务
本学期上半期授课内容为《选修1—2》和《选修4—4》,中段考后进入第一轮复习。
四、学生基本情况及教学目标
认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。
高二文科学生共有10个班,其中尖尖班2个,8个平行重点班。尖尖班的学生重点是数学尖子生的培养,冲刺高考数学高分为目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。
五、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
六、教学措施:
1、认真落实,搞好集体备课。每两周进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。并根据需要在年级开设数学困难生补充辅导班。
高二数学反思教案篇7
教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点:灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
高二数学反思教案篇8
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
一、复习引入:
1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2.4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
P107习题2.4A组2、7题
高二数学反思教案篇9
教学目标
一、知识与技能
(1)理解并掌握弧度制的定义;
(2)领会弧度制定义的合理性;
(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;
(4)熟练地进行角度制与弧度制的换算;
(5)角的集合与实数集之间建立的一一对应关系.
(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.
二、过程与方法
创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.
三、情态与价值
通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备
教学重难点
重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.
难点:理解弧度制定义,弧度制的运用.
高二数学反思教案篇10
一、教学过程
1.复习。
反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。
求出函数y=x3的反函数。
2.新课。
先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):
教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。
生2:这是y=x3的反函数y=的图象。
师:对,但是怎么会得到这个图象,请大家讨论。
师:我们请生1再给大家演示一下,大家帮他找找原因。
生3:问题出在他选择的次序不对。
师:哪个次序?
生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。
师:是这样吗?我们请生1再做一次。
(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)
师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?
师:我们请生4来告诉大家。
生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。
师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?
(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)
师:怎么由y=x3的图象得到y=的图象?
生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。
师:将横坐标与纵坐标互换?怎么换?
师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?
生6:我发现这两个图象应是关于某条直线对称。
师:能说说是关于哪条直线对称吗?
生6:我还没找出来。
学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。
生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。
师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。
(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)
教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,也不是函数的图象。
最后教师与学生一起总结:
点(x,y)与点(y,x)关于直线y=x对称;
函数及其反函数的图象关于直线y=x对称。
二、反思与点评
1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。
2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。
计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。
在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。
当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。
3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。
高二数学反思教案篇11
【教学目标】
1.知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法。
2.过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3.情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
【重点难点】
1.教学重点:集合的基本概念与表示方法。
2.教学难点:选择合适的方法正确表示集合。
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。
高二数学反思教案篇12
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
高二数学反思教案篇13
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;
3.函数方程思想的几种重要形式
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;
(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;
(4)函数f(x)=(1+x)^n(n∈N_)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;
(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
高二数学反思教案篇14
【学习目标】
1、进一步体会数形结合的思想,提高分析问题解决问题的能力;
2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;
3、掌握诱导公式在求值和化简中的应用.
【学习重点】正切函数的诱导公式及应用
【学习难点】正切函数诱导公式的推导
【学习过程】
一、预习自学
1.观察课本38页图1-46,当-414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式时,角414【导学案】正切函数的诱导公式与角2414【导学案】正切函数的诱导公式的正切函数值有什么关系?
我们可以归纳出以下公式:
tan(2414【导学案】正切函数的诱导公式)=tan(-414【导学案】正切函数的诱导公式)=tan(2414【导学案】正切函数的诱导公式)=
tan(414【导学案】正切函数的诱导公式=tan(414【导学案】正切函数的诱导公式=
2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。
414【导学案】正切函数的诱导公式
给上述箭头上填上相应的文字
二、合作探究
探究1试运用414【导学案】正切函数的诱导公式,414【导学案】正切函数的诱导公式的正、余弦函数的诱导公式推证公式tan(414【导学案】正切函数的诱导公式和tan414【导学案】正切函数的诱导公式.
探究2若tan414【导学案】正切函数的诱导公式,借助三角函数定义求角414【导学案】正切函数的诱导公式的正弦函数值和余弦函数值.
探究3求414【导学案】正切函数的诱导公式的值.
三、达标检测
1下列各式成立的是()
Atan(414【导学案】正切函数的诱导公式=-tan414【导学案】正切函数的诱导公式Btan(414【导学案】正切函数的诱导公式=tan414【导学案】正切函数的诱导公式
Ctan(-414【导学案】正切函数的诱导公式)=-tan414【导学案】正切函数的诱导公式Dtan(2414【导学案】正切函数的诱导公式)=tan414【导学案】正切函数的诱导公式
2求下列三角函数数值
(1)tan(-414【导学案】正切函数的诱导公式(2)tan240414【导学案】正切函数的诱导公式414【导学案】正切函数的诱导公式(3)tan(-1574414【导学案】正切函数的诱导公式)
3化简求值
tan675414【导学案】正切函数的诱导公式+tan765414【导学案】正切函数的诱导公式+tan(-300414【导学案】正切函数的诱导公式)+tan(-690414【导学案】正切函数的诱导公式)+tan1080414【导学案】正切函数的诱导公式
四、课后延伸
求值:414【导学案】正切函数的诱导公式
高二数学反思教案篇15
1.本节课的重点是理解算法的概念,体会算法的思想,难点是掌握简单问题算法的表述.
2.本节课要重点掌握的规律方法
(1)掌握算法的特征,见讲1;
(2)掌握设计算法的一般步骤,见讲2;
(3)会设计实际问题的算法,见讲3.
3.本节课的易错点
(1)混淆算法的特征,如讲1.
(2)算法语言不规范致误,如讲3.
课下能力提升(一)
[学业水平达标练]
题组1算法的含义及特征
1.下列关于算法的说法错误的是()
A.一个算法的步骤是可逆的
B.描述算法可以有不同的方式
C.设计算法要本着简单方便的原则
D.一个算法不可以无止境地运算下去
解析:选A由算法定义可知B、C、D对,A错.
2.下列语句表达的是算法的有()
①拨本地电话的过程为:1提起话筒;2拨号;3等通话信号;4开始通话或挂机;5结束通话;
②利用公式V=Sh计算底面积为3,高为4的三棱柱的体积;
③x2-2x-3=0;
④求所有能被3整除的正数,即3,6,9,12,….
A.①②B.①②③
C.①②④D.①②③④
解析:选A算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.①②都各表达了一种算法;③只是一个纯数学问题,不是一个明确步骤;④的步骤是无穷的,与算法的有穷性矛盾.
3.下列各式中S的值不可以用算法求解的是()
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1+12+…+110000
D.S=1+2+3+4+…
解析:选DD中的求和不符合算法步骤的有限性,所以它不可以用算法求解,故选D.
题组2算法设计
4.给出下面一个算法:
第一步,给出三个数x,y,z.
第二步,计算M=x+y+z.
第三步,计算N=13M.
第四步,得出每次计算结果.
则上述算法是()
A.求和B.求余数
C.求平均数D.先求和再求平均数
解析:选D由算法过程知,M为三数之和,N为这三数的平均数.
5.(2016•东营高一检测)一个算法步骤如下:
S1,S取值0,i取值1;
S2,如果i≤10,则执行S3,否则执行S6;
S3,计算S+i并将结果代替S;
S4,用i+2的值代替i;
S5,转去执行S2;
S6,输出S.
运行以上步骤后输出的结果S=()
A.16B.25
C.36D.以上均不对
解析:选B由以上计算可知:S=1+3+5+7+9=25,答案为B.
6.给出下面的算法,它解决的是()
第一步,输入x.
第二步,如果x<0,则y=x2;否则执行下一步.
第三步,如果x=0,则y=2;否则y=-x2.
第四步,输出y.
A.求函数y=x2x<0,-x2x≥0的函数值
B.求函数y=x2x<0,2x=0,-x2x>0的函数值
C.求函数y=x2x>0,2x=0,-x2x<0的函数值
D.以上都不正确
解析:选B由算法知,当x<0时,y=x2;当x=0时,y=2;当x>0时,y=-x2.故选B.
7.试设计一个判断圆(x-a)2+(y-b)2=r2和直线Ax+By+C=0位置关系的算法.
解:算法步骤如下:
第一步,输入圆心的坐标(a,b)、半径r和直线方程的系数A、B、C.
第二步,计算z1=Aa+Bb+C.
第三步,计算z2=A2+B2.
第四步,计算d=z1z2.
第五步,如果d>r,则输出“相离”;如果d=r,则输出“相切”;如果d
8.某商场举办优惠促销活动.若购物金额在800元以上(不含800元),打7折;若购物金额在400元以上(不含400元)800元以下(含800元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x,输出实际交款额y.
解:算法步骤如下:
第一步,输入购物金额x(x>0).
第二步,判断“x>800”是否成立,若是,则y=0.7x,转第四步;否则,执行第三步.
第三步,判断“x>400”是否成立,若是,则y=0.8x;否则,y=x.
第四步,输出y,结束算法.
题组3算法的实际应用
9.国际奥委会宣布2020年夏季奥运会主办城市为日本的东京.据《中国体育报》报道:对参与竞选的5个夏季奥林匹克运动会申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票数超过总票数的一半,那么该城市将获得举办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后进行第二轮投票;如果第二轮投票仍没选出主办城市,将进行第三轮投票,如此重复投票,直到选出一个主办城市为止,写出投票过程的算法.
解:算法如下:
第一步,投票.
第二步,统计票数,如果一个城市得票数超过总票数的一半,那么该城市就获得主办权,否则淘汰得票数最少的城市并转第一步.
第三步,宣布主办城市.
[能力提升综合练]
1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用()
A.13分钟B.14分钟
C.15分钟D.23分钟
解析:选C①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.
2.在用二分法求方程零点的算法中,下列说法正确的是()
A.这个算法可以求方程所有的零点
B.这个算法可以求任何方程的零点
C.这个算法能求方程所有的近似零点
D.这个算法并不一定能求方程所有的近似零点
解析:选D二分法求方程零点的算法中,仅能求方程的一些特殊的近似零点(满足函数零点存在性定理的条件),故D正确.
3.(2016•青岛质检)结合下面的算法:
第一步,输入x.
第二步,判断x是否小于0,若是,则输出x+2,否则执行第三步.
第三步,输出x-1.
当输入的x的值为-1,0,1时,输出的结果分别为()
A.-1,0,1B.-1,1,0
C.1,-1,0D.0,-1,1
解析:选C根据x值与0的关系选择执行不同的步骤.
4.有如下算法:
第一步,输入不小于2的正整数n.
第二步,判断n是否为2.若n=2,则n满足条件;若n>2,则执行第三步.
第三步,依次从2到n-1检验能不能整除n,若不能整除,则n满足条件.
则上述算法满足条件的n是()
A.质数B.奇数
C.偶数D.合数
解析:选A根据质数、奇数、偶数、合数的定义可知,满足条件的n是质数.
5.(2016•济南检测)输入一个x值,利用y=x-1求函数值的算法如下,请将所缺部分补充完整:
第一步:输入x;
第二步:________;
第三步:当x<1时,计算y=1-x;
第四步:输出y.
解析:以x-1与0的大小关系为分类准则知第二步应填当x≥1时,计算y=x-1.
答案:当x≥1时,计算y=x-1
6.已知一个算法如下:
第一步,令m=a.
第二步,如果b<m,则m=b.<p="">
第三步,如果c<m,则m=c.<p="">
第四步,输出m.
如果a=3,b=6,c=2,则执行这个算法的结果是________.
解析:这个算法是求a,b,c三个数中的最小值,故这个算法的结果是2.
答案:2
7.下面给出了一个问题的算法:
第一步,输入a.
第二步,如果a≥4,则y=2a-1;否则,y=a2-2a+3.
第三步,输出y的值.
问:(1)这个算法解决的是什么问题?
(2)当输入的a的值为多少时,输出的数值最小?最小值是多少?
解:(1)这个算法解决的是求分段函数
y=2a-1,a≥4,a2-2a+3,a<4的函数值的问题.
(2)当a≥4时,y=2a-1≥7;
当a<4时,y=a2-2a+3=(a-1)2+2≥2,
∵当a=1时,y取得最小值2.
∴当输入的a值为1时,输出的数值最小为2.
8.“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人.
解:第一步,首先确定最小的满足除以3余2的正整数:2.
第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,….
第三步,在上列数中确定最小的满足除以5余3的正整数:8.
第四步,然后在自然数内在8的基础上依次加上15,得到8,23,38,53,….
第五步,在上列数中确定最小的满足除以7余4的正整数:53.
即士兵至少有53人.
高二数学反思教案(通用范文15篇)




