高二数学电子版教案
教案按照教学过程的步骤编排,让教师能够清晰地了解整个教学流程,有利于教学的有序进行。优秀的高二数学电子版教案应该是怎样的?快来学习高二数学电子版教案的撰写技巧,跟着小编一起来参考!
高二数学电子版教案篇1
第一章算法初步
本章教材分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.
本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.
在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.
本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想”“转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:
(1)知识间的联系;
(2)数学思想方法;
(3)认知规律.
本章教学时间约需12课时,具体分配如下(仅供参考):
1.1.1算法的概念约1课时
1.1.2程序框图与算法的基本逻辑结构约4课时
1.2.1输入语句、输出语句和赋值语句约1课时
1.2.2条件语句约1课时
1.2.3循环语句约1课时
1.3算法案例约3课时
本章复习约1课时
1.1算法与程序框图
1.1.1算法的概念
整体设计
教学分析
算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.
三维目标
1.正确理解算法的概念,掌握算法的基本特点.
2.通过例题教学,使学生体会设计算法的基本思路.
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.
重点难点
教学重点:算法的含义及应用.
教学难点:写出解决一类问题的算法.
课时安排
1课时
教学过程
导入新课
思路1(情境导入)
一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法.
思路2(情境导入)
大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?
答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.
上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念.
思路3(直接导入)
算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.
推进新课
新知探究
提出问题
(1)解二元一次方程组有几种方法?
(2)结合教材实例总结用加减消元法解二元一次方程组的步骤.
(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.
(4)请写出解一般二元一次方程组的步骤.
(5)根据上述实例谈谈你对算法的理解.
(6)请同学们总结算法的特征.
(7)请思考我们学习算法的意义.
讨论结果:
(1)代入消元法和加减消元法.
(2)回顾二元一次方程组
的求解过程,我们可以归纳出以下步骤:
第一步,①+②×2,得5x=1.③
第二步,解③,得x=.
第三步,②-①×2,得5y=3.④
第四步,解④,得y=.
第五步,得到方程组的解为
(3)用代入消元法解二元一次方程组
我们可以归纳出以下步骤:
第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④
第三步,解④得y=.⑤
第四步,把⑤代入③,得x=2×-1=.
第五步,得到方程组的解为
(4)对于一般的二元一次方程组
其中a1b2-a2b1≠0,可以写出类似的求解步骤:
第一步,①×b2-②×b1,得
(a1b2-a2b1)x=b2c1-b1c2.③
第二步,解③,得x=.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④
第四步,解④,得y=.
第五步,得到方程组的解为
(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.
在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.
现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.
(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.
应用示例
思路1
例1(1)设计一个算法,判断7是否为质数.
(2)设计一个算法,判断35是否为质数.
算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.
算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.
第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.
第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.
第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.
第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.
(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.
第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.
第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.
第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.
点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.
变式训练
请写出判断n(n>2)是否为质数的算法.
分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.
这个操作一直要进行到i的值等于(n-1)为止.
算法如下:第一步,给定大于2的整数n.
第二步,令i=2.
第三步,用i除n,得到余数r.
第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.
第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.
例2写出用“二分法”求方程x2-2=0(x>0)的近似解的算法.
分析:令f(x)=x2-2,则方程x2-2=0(x>0)的解就是函数f(x)的零点.
“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)•f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)•f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.[来源:学&科&网Z&X&X&K]
解:第一步,令f(x)=x2-2,给定精确度d.
第二步,确定区间[a,b],满足f(a)•f(b)<0.
第三步,取区间中点m=.
第四步,若f(a)•f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
当d=0.005时,按照以上算法,可以得到下表.
aba-b
121
11.50.5
1.251.50.25
1.3751.50.125
1.3751.43750.0625
1.406251.43750.03125
1.406251.4218750.015625
1.41406251.4218750.0078125
1.41406251.417968750.00390625
于是,开区间(1.4140625,1.41796875)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求的近似值的一个算法.
点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……
思路2
例1一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.
分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.
解:具体算法如下:
算法步骤:
第一步:人带两只狼过河,并自己返回.
第二步:人带一只狼过河,自己返回.
第三步:人带两只羚羊过河,并带两只狼返回.
第四步:人带一只羊过河,自己返回.
第五步:人带两只狼过河.
点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.
例2喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.
分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.
解:算法一:
第一步,洗刷水壶.
第二步,烧水.
第三步,洗刷茶具.
第四步,沏茶.
算法二:
第一步,洗刷水壶.
第二步,烧水,烧水的过程当中洗刷茶具.
第三步,沏茶.
点评:解决一个问题可有多个算法,可以选择其中的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.
例3写出通过尺轨作图确定线段AB一个5等分点的算法.
分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.
解:算法分析:
第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.
第二步,在射线上任取一个不同于端点A的点C,得到线段AC.
第三步,在射线上沿AC的方向截取线段CE=AC.
第四步,在射线上沿AC的方向截取线段EF=AC.
第五步,在射线上沿AC的方向截取线段FG=AC.
第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.
第七步,连结DB.
第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点.
点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.
知能训练
设计算法判断一元二次方程ax2+bx+c=0是否有实数根.
解:算法步骤如下:
第一步,输入一元二次方程的系数:a,b,c.
第二步,计算Δ=b2-4ac的值.
第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.
点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.
拓展提升
中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.
解:算法分析:
数学模型实际上为:y关于t的分段函数.
关系式如下:
y=
其中[t-3]表示取不大于t-3的整数部分.
算法步骤如下:
第一步,输入通话时间t.
第二步,如果t≤3,那么y=0.22;否则判断t∈Z是否成立,若成立执行
y=0.2+0.1×(t-3);否则执行y=0.2+0.1×([t-3]+1).
第三步,输出通话费用c.
课堂小结
(1)正确理解算法这一概念.
(2)结合例题掌握算法的特点,能够写出常见问题的算法.
作业
课本本节练习1、2.
设计感想
本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.
高二数学电子版教案篇2
教学目的:掌握圆的标准方程,并能解决与之有关的.问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
1说出下列圆的方程
⑴圆心(3,-2)半径为5
⑵圆心(0,3)半径为3
2指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3判断3x-4y-10=0和x2+y2=4的位置关系
4圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高二数学电子版教案篇3
教学目标:
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.
教学重点:
函数的概念,函数定义域的求法.
教学难点:
函数概念的理解.
教学过程:
Ⅰ.课题导入
[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?
(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).
设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.
[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:
问题一:y=1(x∈R)是函数吗?
问题二:y=x与y=x2x是同一个函数吗?
(学生思考,很难回答)
[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).
Ⅱ.讲授新课
[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.
在(1)中,对应关系是“乘2”,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.
在(2)中,对应关系是“求平方”,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.
在(3)中,对应关系是“求倒数”,即对于集合A中的每一个数x,集合B中都有一个数1x和它对应.
请同学们观察3个对应,它们分别是怎样形式的对应呢?
[生]一对一、二对一、一对一.
[师]这3个对应的共同特点是什么呢?
[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.
[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的.实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.
现在我们把函数的概念进一步叙述如下:(板书)
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰A→B为从集合A到集合B的一个函数.
记作:y=f(x),x∈A
其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{yy=f(x),x∈A}叫函数的值域.
一次函数f(x)=ax+b(a≠0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a≠0)和它对应.
反比例函数f(x)=kx(k≠0)的定义域是A={--≠0},值域是B={f(x)f(x)≠0},对于A中的任意一个实数x,在B中都有一个实数f(x)=kx(k≠0)和它对应.
二次函数f(x)=ax2+bx+c(a≠0)的定义域是R,值域是当a>0时B={f(x)f(x)≥4ac-b24a};当a<0时,B={f(x)f(x)≤4ac-b24a},它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a≠0)对应.
函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.
y=1(x∈R)是函数,因为对于实数集R中的任何一个数x,按照对应关系“函数值是1”,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.
Y=x与y=x2x不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x的定义域是{--≠0}.所以y=x与y=x2x不是同一个函数.
[师]理解函数的定义,我们应该注意些什么呢?(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应.
②符号“f:A→B”表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.
③集合A中数的任意性,集合B中数的惟一性.
④f表示对应关系,在不同的函数中,f的具体含义不一样.
⑤f(x)是一个符号,绝对不能理解为f与x的乘积.
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x)、F(x)、G(x)等符号来表示
Ⅲ.例题分析
[例1]求下列函数的定义域.
(1)f(x)=1x-2(2)f(x)=3x+2(3)f(x)=x+1+12-x
分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.
解:(1)x-2≠0,即x≠2时,1x-2有意义
∴这个函数的定义域是{--≠2}
(2)3x+2≥0,即x≥-23时3x+2有意义
∴函数y=3x+2的定义域是[-23,+∞)
(3)x+1≥02-x≠0x≥-1x≠2
∴这个函数的定义域是{--≥-1}∩{--≠2}=[-1,2)∪(2,+∞).
注意:函数的定义域可用三种方法表示:不等式、集合、区间.
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集R;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.
例如:一矩形的宽为xm,长是宽的2倍,其面积为y=2x2,此函数定义域为x>0而不是全体实数.
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.
[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+3•2+1=11
注意:f(a)是常量,f(x)是变量,f(a)是函数f(x)中当自变量x=a时的函数值.
下面我们来看求函数式的值应该怎样进行呢?
[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.
[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!
[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.
[师]生乙的回答完整吗?
[生]完整!(课本上就是如生乙所述那样写的).
[师]大家说,判定两个函数是否相同的依据是什么?
[生]函数的定义.
[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?
(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)
(无人回答)
[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!
(生恍然大悟,我们怎么就没想到呢?)
[例2]求下列函数的值域
(1)y=1-2x(x∈R)(2)y=x-1x∈{-2,-1,0,1,2}
(3)y=x2+4x+3(-3≤x≤1)
分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.
对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域.
对于(3)可借助数形结合思想利用它们的图象得到值域,即“图象法”.
解:(1)y∈R
(2)y∈{1,0,-1}
(3)画出y=x2+4x+3(-3≤x≤1)的图象,如图所示,
当x∈[-3,1]时,得y∈[-1,8]
Ⅳ.课堂练习
课本P24练习1—7.
Ⅴ.课时小结
本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)
Ⅵ.课后作业
课本P28,习题1、2.
高二数学电子版教案篇4
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.
(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3)情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4.教学重点与难点
(1)重点:圆的标准方程的求法及其应用.
(2)难点:①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
【二】教法学法分析
1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.
2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.
下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高
反馈训练形成方法小结反思拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二)深入探究——获得新知
问题二1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2.如果圆心在,半径为时又如何呢?
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.
(三)应用举例——巩固提高
I.直接应用内化新知
问题三1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点.
2.写出圆的圆心坐标和半径.
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.
II.灵活应用提升能力
问题四1.求以点为圆心,并且和直线相切的圆的方程.
2.求过点,圆心在直线上且与轴相切的圆的方程.
3.已知圆的方程为,求过圆上一点的切线方程.
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III.实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六1.求过原点和点,且圆心在直线上的圆的标准方程.
2.求圆过点的切线方程.
3.求圆过点的切线方程.
接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.
(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为,半径为r的圆的标准方程为:
圆心在原点时,半径为r的圆的标准方程为:.
②已知圆的方程是,经过圆上一点的切线的方程是:.
2.分层作业
(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.
3.激发新疑
问题七1.把圆的标准方程展开后是什么形式?
2.方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:
横向阐述教学设计
(一)突出重点抓住关键突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.
高二数学电子版教案篇5
教学目标
1、知识与技能
(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;
(2)能熟练运用正弦函数的性质解题。
2、过程与方法
通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
教学重难点
重点:正弦函数的性质。
难点:正弦函数的性质应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
【探究新知】
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:
(1)正弦函数的定义域是什么?
(2)正弦函数的值域是什么?
(3)它的最值情况如何?
(4)它的正负值区间如何分?
(5)?(x)=0的解集是多少?
师生一起归纳得出:
1.定义域:y=sinx的定义域为R
2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)
再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业:习题1—4第3、4、5、6、7题.
高二数学电子版教案篇6
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
高二数学电子版教案篇7
一、说教材:
1、地位、作用和特点:
《___》是高中数学课本第__册(_修)的第__章“___”的第__节内容。
本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《__》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是__;特点之二是:___。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学__真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课新课教学反馈发展
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学的有关情况。)激发学生的探究__,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《___》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高二数学电子版教案篇8
一教学内容分析:
本节内容在教材中有着重要的地位与作用,线性规划是利用数学为工具来研究一定的人、财、物、时、空等资源在一定的条件下,如何精打细算巧安排,用最少的资源,取得的经济效益,这一部分内容体现了数学的工具性、应用性,同时渗透了化归,数形结合的数学思维和解决实际问题的一种重要的解题方法——数学建模法。
二学生学习情况分析:
把实际问题转化为线性规划问题,并结合出解答是本节的重点和难点,对许多学生来说,解数学应用题的最常见的困难是不会持实际问题转化或数学问题,即不会建模,对学生而言,解决应用问题的障碍主要有三类:①不能正确理解题意思,弄清各元素之间的关系;②不能弄清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;③孤立考虑单个问题情境,不能多联想。
三设计思想:
注意学生的探究过程,让学生体验探究问题的成就感,一切以学生的探究活动为主,以问题是驱动,激发学生学习乐趣。
四教学目标:
1、使学生了解线性规划的意义以及约束条件、目标函数、可行域、可行解、解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题。
2、通过本节内容的学习,培养学生观察、联想以及作图的能力等。渗透集合,化归,数形结合的数学思想,提问“建模”和解决实际问题的能力。
五教学重点和难点:
教学重点:求线性目标函数的最值问题,培养学生“用数学”的意识,即线性规划在实际生活中的应用。
教学难点:把实际问题转化为线性规划问题,并结合出解答。
六教学过程:
(一)问题引入
某工厂用A、B两种配件生产甲、乙两种产品,每生产一会一件甲产品使用4个A配件耗时1个小时,每生产一件乙产品使用4个B配件耗时2小时,该厂每天最多可以配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的月生产安排是什么?由学生列出不等关系,并画出平面区域,由此引入新课。
(二)问题深入,推进新课
①引领学生自主探索引入问题中的实际问题,怎样安排才有意义?
②若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润?
设计意图:
由实际问题出发激发学生学习兴趣,在探究过程中,看似简单的问题,学生容易抓不住问题的主干,需要适时的引导。
(三)揭示本质深化认识
提出问题:
①上述探索的问题中,Z的几何意义是什么?结合图形说明
②结合以上探究,理解什么是目标函数?线性目标函数?什么是线性规划?弄清什么是可行域解?可行域?解?
③你能根据以上探究总结出解决线性规划问题的一般步骤吗?
(四)应用示例
高二数学电子版教案篇9
一、教学目标
1.把握菱形的判定.
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.
3.通过教具的演示培养学生的学习爱好.
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:菱形的判定方法.
2.教学难点:菱形判定方法的综合应用.
四、课时安排
1课时
五、教具学具预备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
复习提问
1.叙述菱形的定义与性质.
2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.
引入新课
师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?
生答:定义法.
此外还有别的两种判定方法,下面就来学习这两种方法.
讲解新课
菱形判定定理1:四边都相等的四边形是菱形.
菱形判定定理2:对角钱互相垂直的&39;平行四边形是菱形.图1
分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.
分析判定2:
师问:本定理有几个条件?
生答:两个.
师问:哪两个?
生答:(1)是平行四边形(2)两条对角线互相垂直.
师问:再需要什么条件可证该平行四边形是菱形?
生答:再证两邻边相等.
(由学生口述证实)
证实时让学生注重线段垂直平分线在这里的应用,
师问:对角线互相垂直的四边形是菱形吗?为什么?
可画出图,显然对角线,但都不是菱形.
菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):
注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.
例4已知:的对角钱的垂直平分线与边、分别交于、,如图.
求证:四边形是菱形(按教材讲解).
总结、扩展
1.小结:
(1)归纳判定菱形的四种常用方法.
(2)说明矩形、菱形之间的区别与联系.
2.思考题:已知:如图4△中,,平分,,,交于.
求证:四边形为菱形.
八、布置作业
教材P159中9、10、11、13
高二数学电子版教案篇10
教学目标
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以转化为一元一次不等式组;
(3)了解简单的分式不等式的解法;
(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;
(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;
(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;
(7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.
教学重点:一元二次不等式的解法;
教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.
教与学过程设计
第一课时
Ⅰ.设置情境
问题:
①解方程
②作函数的图像
③解不等式
【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?
【回答】函数图像与x轴的交点横坐标为方程的根,不等式的解集为函数图像落在x轴上方部分对应的横坐标。能。
通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用
在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?
Ⅱ.探索与研究
我们现在就结合不等式的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)
【答】方程的解集为
不等式的解集为
【置疑】哪位同学还能写出的解法?(请一程度差的同学回答)
【答】不等式的解集为
我们通过二次函数的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题的解集,还求出了的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。
下面我们再对一般的一元二次不等式与来进行讨论。为简便起见,暂只考虑的情形。请同学们思考下列问题:
如果相应的一元二次方程分别有两实根、惟一实根,无实根的话,其对应的二次函数的图像与x轴的位置关系如何?(提问程度较好的学生)
【答】二次函数的图像开口向上且分别与x轴交于两点,一点及无交点。
现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)
【答】的解集依次是
的解集依次是
它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数的图像。
课本第19页上的例1.例2.例3.它们均是求解二次项系数的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。
(教师巡视,重点关注程度稍差的同学。)
Ⅲ.演练反馈
1.解下列不等式:
(1)(2)
(3)(4)
2.若代数式的值恒取非负实数,则实数x的取值范围是。
3.解不等式
(1)(2)
参考答案:
1.(1);(2);(3);(4)R
2.
3.(1)
(2)当或时,,当时,
当或时,。
Ⅳ.总结提炼
这节课我们学习了二次项系数的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。
(五)、课时作业
(P20.练习等3、4两题)
(六)、板书设计
高二数学电子版教案篇11
【教学目标】
掌握两平面垂直的判定和性质,并用以解决有关问题.
【知识梳理】
1.定义
两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
2.两个平面垂直的判定和性质
语言表述图示字母表示应用
判定根据定义.证明两平面所成的二面角是直二面角.
?AOB是二面角??a??的平面角,且?AOB=90?,则???证两平面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.???性质如果两个平面垂直,那么它们所成二面角的平面角是直角.
???,?AOB是二面角??a??的平面角,则?AOB=90?
证两条直线垂直
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.?a??
证直线和平面垂直
重要提示
1.两个平面垂直的性质定理,即:“如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面”是作点到平面距离的依据,要过平面外一点P作平面?的垂线,通常是先作(找)一个过点P并且和?垂直的平面?,设???=l,在?内作直线a?l,则a??.
2.三种垂直关系的证明
(1)线线垂直的证明
①利用“两条平行直线中的一条和第三条直线垂直,那么另一条也和第三条直线垂直”;
②利用“线面垂直的定义”,即由“线面垂直?线线垂直”;
③利用“三垂线定理或三垂线定理的逆定理”.
(2)线面垂直的证明
①利用“线面垂直的判定定理”,即由“线线垂直?线面垂直”;
②利用“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面”;
③利用“面面垂直的性质定理”,即由“面面垂直?线面垂直”;
④利用“一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面”.
(3)面面垂直的证明
①利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;
②利用“面面垂直的判定定理”,即由“线面垂直?面面垂直”.
1、在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,⊿BCD是锐角三角形,那么必有……()
A、平面ABD⊥平面ADCB、平面ABD⊥平面ABC
C、平面ADC⊥平面BCDD、平面ABC⊥平面BCD
高二数学电子版教案(例文11篇)




