高中数学免费教案
教案可以帮助教师评估学生的学习效果和进步情况,从而更好地调整教学策略,提高教学质量和效率。如何才能写出优秀的高中数学免费教案?这里给大家分享高中数学免费教案供大家参考。
高中数学免费教案篇1
各位老师:
大家好!
我叫______,来自____。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
2.教学的重点和难点
重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
二、教学目标分析
1.知识与技能目标
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、过程与方法:
经历公式的推导过程,体验由特殊到一般的数学思想方法。
3、情感态度与价值观:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。
三、教法与学法分析
1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。
㈠创设情景、引入新课
在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:
试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。
在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。
1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?
不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。
2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]
「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。
㈡思考交流、形成概念
学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。
[基本事件有如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。
例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?
先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。
「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点
观察对比,发现两个模拟试验和例1的共同特点:
让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。
[经概括总结后得到:
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。
「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。
㈢观察分析、推导方程
问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?
教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:
「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。
提问:
(1)在例1的实验中,出现字母"d"的概率是多少?
(2)在使用古典概型的概率公式时,应该注意什么?
「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
㈣例题分析、推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。
「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
㈤探究思想、巩固深化
问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
要求学生观察对比两种结果,找出问题产生的原因。
「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
㈥总结概括、加深理解
1.基本事件的特点
2.古典概型的特点
3.古典概型的概率计算公式
学生小结归纳,不足的地方老师补充说明。
「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
㈦布置作业
课本练习1、2、3
「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
高中数学免费教案篇2
一、教学设计
1、教学背景
在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题,这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2009级进行了“创设数学情境与提出数学问题”的以学生为主的“生本课堂”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。
2、教材分析
“余弦定理”是高中数学的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
3、设计思路
建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生活,他们几乎都有一些自己的看法。而且,有些问题即使他们还没有接触过,没有现成的经验,但当问题一旦呈现在面前时,他们往往也可以基于相关的经验,依靠他们的认知能力,形成对问题的某种解释。而且,这种解释并不都是胡乱猜测,而是从他们的经验背景出发而推出的合乎逻辑的假设。所以,教学不能无视学生的这些经验,另起炉灶,从外部装进新知识,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”出新的知识经验。
为此我们根据“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境—问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:
①创设一个现实问题情境作为提出问题的背景;
②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边。
③为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生明确以下两点:一是证明的起点;二是如何将向量关系转化成数量关系。
④由学生独立使用已证明的结论去解决中所提出的问题。
二、教学反思
本课中,教师立足于所创设的情境,通过学生自主探索、合作交流,亲身经历了提出问题、解决问题、应用反思的过程,学生成为余弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,知识目标、能力目标、情感目标均得到了较好的落实,为今后的“定理教学”提供了一些有用的借鉴。
例如,新课的引入,我引导学生从向量的模下手思考:
生:利用向量的模并借助向量的数量积。
教师:正确!由于向量的模长,夹角已知,只需将向量用向量来表示即可。易知,接下来只要把这个向量等式数量化即可。如何实现呢
学生8:通过向量数量积的运算。
通过教师的引导,学生不难发现还可以写成,不共线,这是平面向量基本定理的一个运用。因此在一些解三角形问题中,我们还可以利用平面向量基本定理寻找向量等式,再把向量等式化成数量等式,从而解决问题。
(从学生的“最近发展区”出发,证明方法层层递进,激发学生探求新知的欲望,从而感受成功的喜悦。)
创设数学情境是“情境·问题·反思·应用”教学的基础环节,教师必须对学生的身心特点、知识水平、教学内容、教学目标等因素进行综合考虑,对可用的情境进行比较,选择具有较好的教育功能的情境。
从应用需要出发,创设认知冲突型数学情境,是创设情境的常用方法之一。“余弦定理”具有广泛的应用价值,故本课中从应用需要出发创设了教学中所使用的数学情境。该情境源于教材解三角形应用举例的例1实践说明,这种将教材中的例题、习题作为素材改造加工成情境,是创设情境的一条有效途径。只要教师能对教材进行深入、细致、全面的研究,便不难发现教材中有不少可用的素材。
“情境·问题·反思·应用”教学模式主张以问题为“红线”组织教学活动,以学生作为提出问题的主体,如何引导学生提出问题是教学成败的关键,教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境(不仅具有丰富的内涵,而且还具有“问题”的诱导性、启发性和探索性),而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。关注学生学习的结果,更关注学生学习的过程;关注学生数学学习的水平,更关注学生在数学活动中所表现出来的情感与态度;关注是否给学生创设了一种情境,使学生亲身经历了数学活动过程。把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。
高中数学免费教案篇3
依据如下:
(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。
(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。
突破难点方法:
(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。
(2)值得一提的是公式的证明还有两种方法:
后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。
等比数列前n项和公式及应用是本节课的重点内容。
依据如下:
(1)新大纲中有较高层次的要求。
(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。
(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。
突出重点方法:
(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。
(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。
(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。
2.实际应用题.
这样设置主要依据:
(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。
(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性,。
根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。
案例为浅层次要求,使学生有概括印象。
公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。
应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。
其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。
在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。
在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照Intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。
高中数学免费教案篇4
数列的相关概念
1.数列概念
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N--或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
高中数学免费教案篇5
一、教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二、目标分析:
教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
2.过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3.情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
三.教法分析
1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.
四.过程分析
(一)创设情景,揭示课题
1.教师首先提出问题:
(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?
引导学生互相交流.与此同时,教师对学生的活动给予评价.
2.活动:
(1)列举生活中的集合的例子;
(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1—20以内的所有质数;
(2)我国古代的.四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学2004年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.让学生充分发表自己的建解.
3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,
高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a是集合A的元素,就说a属于集合A,记作a?A.
如果a不是集合A的元素,就说a不属于集合A,记作a?A.
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合A?{x?N1?x?8}
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象
(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:1.课后书面作业:第13页习题1.1A组第4题.
2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种
呢?如何表示?请同学们通过预习教材.
五.板书分析
略
高中数学免费教案篇6
高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度“3+综合”普遍吹散全国大地之时,代表人们基本素质的“3”科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。
一、高中数学课的设置
高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学“会考”。高三年级文科生学习第三册(选修1):第一章统计;第二章极限与导数。高三年级理科生学习第三册(选修2):第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有重要的“高考”。
二、初中数学与高中数学的差异。
1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0-1800”范围内的,但实际当中也有7200和“-300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。
还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。
2、学习方法的差异。
(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。
(2)模仿与创新的区别。
初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。
3、学生自学能力的差异
初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。
其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。
4、思维习惯上的差异
初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。
5、定量与变量的差异
初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。
三、如何学好高中数学
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、有良好的学习兴趣
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的`条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
3、有意识培养自己的各方面能力
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。
平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
四、其它注意事项
1、注意化归转化思想学习。
人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。
2、学会数学教材的数学思想方法。
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。
课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。
五、学数学的几个建议。
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。
2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
3、记忆数学规律和数学小结论。
4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。
5、争做数学课外题,加大自学力度。
6、反复巩固,消灭前学后忘。
7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类
同学们在高中有优美的学习环境,有一群乐于事业的热心教师,全体教师经验丰富,他们甘愿为你们做铺路石直至你们走进高等学校大门。我们数学组的全体教师一定会使你们成为数学学习的成功。
高中数学免费教案篇7
如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
第一,用多变的课堂教学,充分调动学生的主动性
我认为数学教学是教师思维与学生思维相互沟通的过程。从信息论的角度看,这种沟通就是指数学信息的理解、加工、传递的动态过程,在这个过程中充满了师生之间的数学交流和信息的转换,离开了学生的参与,整个过程就难以畅通。北京师范大学曹才翰教授指出“数学学习是再创造再发现的过程,务必要主体的用心参与才能实现这个过程”;从当前全面实施素质教育的要求来看,激发学生用心参与课堂教学,就是为了提高课堂教学效率,培养学生的学习潜力和创造思维潜力,这与以培养创造型人才为目的的素质教育完全一致,因此,在数学课堂教学中提高学生的参与度,不仅仅具有提高数学教学质量的近期作用,而且具有提高学生素质的远期功效。
若要实现这个目标,在教学引入时我常常以问题作为出发点,选取的素材密切联系学生的现实生活,运用学生的求知欲,使学生感到数学就在他们身边,与现实世界联系紧密,同时问题情景的设置又具有必须的挑战性,引发了学生的思考。
如人教版初二几何《三角形》的《关于三角形的一些概念》在引入时我提出了以下几个问题:你能举出生活中一些有关三角形的实例吗?你能一笔画一个三角形吗?你能用语言叙述你的画图过程吗?
如人教版初二几何《三角形》的《三角形全等的判定(一)》在引入时我提出了这样一个问题:请你任意画一个三角形,你能否再画一个与其全等的三角形。画好后请你剪下来验证一下。学生的用心性被激发,热烈的讨论,课堂上出现了许多状况
有的学生用的是先确定一角再确定两边的画法;有的一个学生是利用尺规根据三边关系画的(这正是后面所要学的一个三角形全等的判定公理);有的学生是利用了垂直、平行、对顶角来省去作图中使用量角器的麻烦,学生充分利用已有的数学知识,利用自己对数学图形的感知,很好的解决了这个问题,透过剪一剪试一试从直观上验证了自己的画法。
如《相似形》的《相似三角形的性质》在引入时我提出了这样的问题:提到与我国并称为世界四大礼貌古国的埃及你会想到什么?学生们说到了法老、金字塔、木乃伊等等,说到金字塔你能测量出埃及大金字塔的高度吗?学生几乎是异口同声地告诉我用影长,当时我称赞他们与我们的几何学之父古希腊人欧几里得的测量方法一样,并讲述了欧几里得的故事,他等到自己在阳光下的影长与他的身高正好相等的时候,测量了金字塔的塔影的长度,这时,他宣布,“这就是大金字塔的高度。”从而激发了学生探索相似三角形的其它性质的兴趣。
我在课堂教学的过程中,为了使成绩较差同学减少对于数学的恐惧感,课堂上放慢教学速度,变换教学方法,如人教版初二几何《三角形》的《关于三角形的一些概念》我是这样处理的:1、请学生讲解三角形的有关概念;2、请学生用折纸的方法讲解角平分线和中线,折纸的过程中你还发现了什么?3、请学生任意作一个三角形,并做出这个三角形的一条角平分线和一条中线。三个要求层层深入了学生对于基本概念的理解,变教师讲为学生讲,取得了较好的效果。
我在课堂上放慢教学速度是能够照顾到大部分学生的,但一小批优等生就会出现没事做的状况,这时学习小组就是他们发挥余热的地方,在具体的教学过程中给学生建立了数学学习小组,让学生在各自的小组中相互帮忙,让每一个学生都能从事小组中不同的工作,并最终完成一个共同的目标。透过小组学习,使学生树立正确的团队观,尊重他人、尊重自己,敢于发表自己的观点,又不固执己见,对同学的见解,既要乐于理解合理成分,又要勇于表达自己不同的看法。在具体实施的过程中,我越发的认识到讨论的重要性,我鼓励学生质疑,质疑教师,质疑教科书,鼓励学生争论,有些知识点在学生的争论中被突破,知识在争论中被融会贯通,我发现学生之间的语言他们更容易理解,于是我开始尝试让学生讲课,讲过三角形的分类等。又如学习基本作图时,教科书就如一本说明书,让学生以学习小组为单位,阅读、画图,互教互学,实际教学时取得了很好的效果。让各层次的学生都能有所知,有所得。在认知效果和记忆效果方面比教师直接给出要好。
第二,布置多样的作业,引导学生的用心性
让学生作业的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。正确组织好学生作业,对于培养学生的独立学习的潜力和习惯,发展学生的智力和创造潜力有着重大好处。因此,教师应重视作业的布置,《数学课程标准》中明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”作业布置如何体现这一基本理念,如何调整作业在学生学习活动中的位置,也是提高课堂教学效率的关键。
课堂结束新课后,我透过作业的布置渗透数学学习方法如自学,这样才能真正提高学生数学学习的水平,开始时每一天的第一样作业是复习,最后一项作业是预习,而且把具体的页数写清楚提出具体的预习提纲,加强学生看书的针对性,开始时还带有必须的强制性如让家长签字,从而提高学生阅读理解的潜力。
对数学的兴趣能激发学生的学习动机,富有情境的作业具有必须吸引力,能使学生充分发挥自己的智力水平去完成。趣味性要体现出题型多样,方式新颖,资料有创造性,如课本习题、自编习题、计算类题目、表述类题目(如单元小结、学习体会、数学故事、小论文等)互相穿插,让学生感受到作业资料和形式的丰富多采,使之情绪高昂,乐于思考,从而感受作业的乐趣。
根据上课资料所需经常让学生动手做教具如剪钝角三角形、锐角三角形、直角三角形,做教具说明三角形具有稳定性而四边形没有此特性等,这种做法不但能够提高学生学习的兴趣,而且会有一些意想不到的事情。如:学生做教具说明三角形具有稳定性而四边形没有此特性时,有的学生用线绳打结连接四边,有的学生为了省事用订书钉订的,而订的不同方法得到有的四边形能动而有的不能,经过学生的讨论得出关键在于连接处是一个点还是两个点的问题,学生很受启发。
高中数学免费教案篇8
教学分析
本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.
在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.
三维目标
1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.
2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.
3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.
重点难点
教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.
教学难点:准确比较两个代数式的大小.
课时安排
1课时
教学过程
导入新课
思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.
思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.
推进新课
新知探究
提出问题
1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?
2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?
3数轴上的任意两 点与对应的两实数具有怎样的关系?
4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?
活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a
教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.
实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.
实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA
实例3:若一个数是非负数,则这个数大于或等于零.
实例4:两点之间线段最短.
实例5:三角形两边之和大于第三边,两边之差小于第三边.
实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.
实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.
教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.
教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.
|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.
|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.
实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.
对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.
讨论结果:
(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.
(4)对于任意两个实数a和b,在a=b,a>b,a应用示例
例1(教材本节例1和例2)
活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.
点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.
变式训练
1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是( )
A.f(x)>g(x) B.f(x)=g(x)
C.f(x)
答案:A
解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).
2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.
解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.
∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.
例2比较下列各组数的大小(a≠b).
(1)a+b2与21a+1b(a>0,b>0);
(2)a4-b4与4a3(a-b).
活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.
解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.
∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.
(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)
=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]
=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].
∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),
又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.
∴a4-b4<4a3(a-b).
点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.
变式训练
已知x>y,且y≠0,比较xy与1的大小.
活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.
解:xy-1=x-yy.
∵x>y,∴x-y>0.
当y<0时,x-yy<0,即xy-1<0. ∴xy<1;
当y>0时,x-yy>0,即xy-1>0.∴xy>1.
点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.
例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由.
活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法.
解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a
由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,
因此a+mb+m>ab≥10%.
所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.
点评:一般地,设a、b为正实数,且a
变式训练
已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则( )
A.a1+a8>a4+a5 B.a1+a8
C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定
答案:A
解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4
=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).
∵{an}各项都大于零,∴q>0,即1+q>0.
又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.
课堂小结
1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.
2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.
作业
习题3—1A组3;习题3—1B组2.
设计感想
1.本节设计关注了教学方法 的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.
2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.
3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.
高中数学免费教案篇9
一、教学内容分析
二面角是我们日常生活中经常见到的一个图形,它是在学生学过空间异面直线所成的角、直线和平面所成角之后,研究的一种空间的角,二面角进一步完善了空间角的概念.掌握好本节课的知识,对学生系统地理解直线和平面的知识、空间想象能力的培养,乃至创新能力的培养都具有十分重要的意义.
二、教学目标设计
理解二面角及其平面角的概念;能确认图形中的已知角是否为二面角的平面角;能作出二面角的平面角,并能初步运用它们解决相关问题.
三、教学重点及难点
二面角的平面角的概念的形成以及二面角的平面角的作法.
四、教学流程设计
五、教学过程设计
一、 新课引入
1.复习和回顾平面角的有关知识.
平面中的角
定义 从一个顶点出发的两条射线所组成的图形,叫做角图形
结构 射线—点—射线
表示法 ∠AOB,∠O等
2.复习和回顾异面直线所成的角、直线和平面所成的角的定义,及其共同特征.(空间角转化为平面角)
3.观察:陡峭与否,跟山坡面与水平面所成的角大小有关,而山坡面与水平面所成的角就是两个平面所成的角.在实际生活当中,能够转化为两个平面所成角例子非常多,比如在这间教室里,谁能举出能够体现两个平面所成角的实例?(如图1,课本的开合、门或窗的开关.)从而,引出“二面角”的定义及相关内容.
二、学习新课
(一)二面角的定义
平面中的角 二面角
定义 从一个顶点出发的两条射线所组成的图形,叫做角 课本P17
图形
结构 射线—点—射线 半平面—直线—半平面
表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β
(二)二面角的图示
1.画出直立式、平卧式二面角各一个,并分别给予表示.
2.在正方体中认识二面角.
(三)二面角的平面角
平面几何中的“角”可以看作是一条射线绕其端点旋转而成,它有一个旋转量,它的大小可以度量,类似地,"二面角"也可以看作是一个半平面以其棱为轴旋转而成,它也有一个旋转量,那么,二面角的大小应该怎样度量?
1.二面角的平面角的定义(课本P17).
2.∠AOB的大小与点O在棱上的位置无关.
[说明]①平面与平面的位置关系,只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,有必要来研究二面角的度量问题.
②与两条异面直线所成的角、直线和平面所成的角做类比,用“平面角”去度量.
③二面角的平面角的三个主要特征:角的顶点在棱上;角的两边分别在两个半平面内;角的两边分别与棱垂直.
3.二面角的平面角的范围:
(四)例题分析
例1 一张边长为a的正三角形纸片ABC,以它的高AD为折痕,将其折成一个 的二面角,求此时B、C两点间的距离.
[说明] ①检查学生对二面角的平面角的定义的掌握情况.
②翻折前后应注意哪些量的位置和数量发生了变化, 哪些没变?
例2 如图,已知边长为a的等边三角形 所在平面外有一点P,使PA=PB=PC=a,求二面角 的大小.
[说明] ①求二面角的步骤:作—证—算—答.
②引导学生掌握解题可操作性的通法(定义法和线面垂直法).
例3 已知正方体 ,求二面角 的大小.(课本P18例1)
[说明] 使学生进一步熟悉作二面角的平面角的方法.
(五)问题拓展
例4 如图,山坡的倾斜度(坡面与水平面所成二面角的度数)是 ,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是 ,沿这条路上山,行走100米后升高多少米?
[说明]使学生明白数学既来源于实际又服务于实际.
三、巩固练习
1.在棱长为1的正方体 中,求二面角 的大小.
2. 若二面角 的大小为 ,P在平面 上,点P到 的距离为h,求点P到棱l的距离.
四、课堂小结
1.二面角的定义
2.二面角的平面角的定义及其范围
3.二面角的平面角的常用作图方法
4.求二面角的大小(作—证—算—答)
五、作业布置
1.课本P18练习14.4(1)
2.在 二面角的一个面内有一个点,它到另一个面的距离是10,求它到棱的距离.
3.把边长为a的正方形ABCD以BD为轴折叠,使二面角A-BD-C成 的二面角,求A、C两点的距离.
六、教学设计说明
本节课的设计不是简单地将概念直接传受给学生,而是考虑到知识的形成过程,设法从学生的数学现实出发,调动学生积极参与探索、发现、问题解决全过程.“二面角”及“二面角的平面角”这两大概念的引出均运用了类比的手段和方法.教学过程中通过教师的层层铺垫,学生的主动探究,使学生经历概念的形成、发展和应用过程,有意识地加强了知识形成过程的教学.
高中数学免费教案篇10
直线的方程
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
高中数学免费教案篇11
一、教材分析(说教材):
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3.重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3.学情分析:(说学法)
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4.教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
高中数学集合教学反思
集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。
第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。
第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。
第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。
高中数学免费教案篇12
开学第一课讲点什么,我想最好不讲学习的事情,不要讲作业什么的。最好的就是谈谈理想,或者写写梦想,描绘一下自己在本学期结束后会变成一个什么样的人。作为老师,我想我会讲三个故事。
第一个故事:我会讲《山体滑坡的故事》
一个灰心丧气的青年人,因科举没考上,便颓废不堪,一蹶不振,整天关在屋子里,抱头痛哭。有一天,一位老者跨进门,语重心长地说:“假如山上滑坡,你该怎么办?”年青人喃喃:“往下跑。”老者仰头大笑:“那你就葬身山中了。你应该往山上跑,你只有勇敢地面对它,才有生还的希望,天下事皆然。”说完便飘然而去。
需要告诉学生的是:只有勇敢面对挑战和困难,才能战胜它。往上走,不要往下走,学习亦如此。
第二个故事:我会讲《老鹰的故事》
一个人在高山之巅的鹰巢里,抓到了一只幼鹰,他把幼鹰带回家,养在鸡笼里。这只幼鹰和鸡一起啄食、嬉闹和休息,它以为自己是一只鸡。这只鹰渐渐长大,羽翼丰满了,主人想把它训练成猎鹰,可是由于终日和鸡混在一起,它已经变得和鸡完全一样,根本没有飞的愿望了。主人试了各种办法,都毫无效果,最后把它带到山顶上,一把将它扔了出去。这只鹰像块石头似的,直掉下去,慌乱之中它拼命地扑打翅膀,就这样,它终于飞了起来!
需要告诉学生的是:相信自己是一只雄鹰,勇敢面对一切挑战和失败。
第三故事:我会讲《苏格拉底的故事》
开学第一天,大哲学家苏格拉底对学生们说:“今天,我们只做一件最简单也是最容易做的事儿:每个人把胳膊尽量都往前甩,然后再尽量往后甩。”说着,苏格拉底示范了一遍,“从今天开始,每天做300下,大家能做到吗?”学生们都笑了,这么简单的事情,有什么做不到的?过了一个月,苏格拉底问学生们:“每天甩手300下,哪些同学坚持了?”有90%的同学骄傲地举起了手。又过了一个月,苏格拉底再问,这回,坚持下来的同学只剩下了八成。一年过后,苏格拉底再一次问大家:“请大家告诉我,最简单的甩手运动,还有哪几位同学坚持了?”这时候,整个教室里,只有一个人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。
需要告诉学生的是:成功在于坚持,这是一个并不神秘的秘诀。
三个故事讲完之后,我还会问问,成功除了学会面对困难,相信自己,学会坚持之外,还需要那些成功因素?当然还需要养成好习惯和掌握好方法。
最后我还会讲两个小故事。来结束我的第一课。
故事一:
父子两住山上,每天都要赶牛车下山卖柴。老父较有经验,坐镇驾车,山路崎岖,弯道特多,儿子眼神较好,总是在要转弯时提醒道:“爹,转弯啦!”有一次父亲因病没有下山,儿子一人驾车。到了弯道,牛怎么也不肯转弯,儿子用尽各种方法,下车又推又拉,用青草诱之,牛一动不动。到底是怎么回事?儿子百思不得其解。最后只有一个办法了,他左右看看无人,贴近牛的耳朵大声叫道:“爹,转弯啦!”牛应声而动。
——要培养好的习惯来代替坏的习惯,当好的习惯积累多了,自然会有一个好的人生。
有个老人在河边钓鱼,一个小孩走过去看他钓鱼,老人技巧纯熟,所以没多久就钓上了满篓的鱼,老人见小孩很可爱,要把整篓的鱼送给他,小孩摇摇头,老人惊异的问道你为何不要?小孩回答:“我想要你手中的钓竿。”老人问:“你要钓竿做什么?小孩说:”这篓鱼没多久就吃完了,要是我有钓竿,我就可以自己钓,一辈子也吃不完。“你们说,这个小孩是不是很聪明?
——重要的还在钓技。学习,不能只记住知识,更重要的是掌握方法,形成能力。
高中数学免费教案篇13
20__年__月,我在江苏连云港新海高中上了一节《椭圆的几何性质》公开课。这节课从准备,到与组内老师探讨、交流,并修改、上课,直至最后聆听各位老师和专家的指导,都让我受益非浅。
本节课是苏教版普通高中课程标准实验教科书《数学》选修1―1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质。利用曲线方程研究曲线的性质,是解析几何的主要任务。通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛
物线的性质做好了铺垫。本节课是围绕着探究椭圆的简单几何性质进行的。因此,依教材的地位与作用及教学目标,将之确定为本节课的重点;又因为学生第一次系统地按照椭圆方程来研究椭圆的简单几何性质,学生感到困难,且如何定义离心率,学生感到棘手,所以我将之确定为本节课的难点。
然而,课后的反思过程中我发现了几个问题:第一,在讲解“顶点”定义时,单纯定义为椭圆与坐标轴的交点,没把握住顶点的重要特征,即“顶点是椭圆与其对称轴的交点”,如果把握住这一点,在讲解时就应先讲“对称性”,再讲“顶点”;二是本节课对几何性质的导入,是由学生回顾上节所讲特征三角形的三边与的大小关系开始的,而多数人对特征三角形的记忆是很模糊的,上节课在这个知识点上学生吸收的并不好,如果把它放在本节课“顶点”之后再讲解,会显得更自然一些;三是“对称性”的讲解过于单薄,学生既然很快就观察出了这个性质,何不趁热打铁,再从代数的角度证明一下呢?过于避重就轻的做法不利于对学生数学思维能力的培养。以上的几点不足都提醒我今后要在研究教材上下更多的功夫。
还有在讲解完“对称性”、准备讲“离心率”之前,我穿插了一道“画椭圆的简图”的题目。并提圆相似吗?椭圆呢?引起了同学们注意。这道题起到了较好的承上启下的作用:既巩固了刚学的性质,又引发了一个问题:椭圆的“扁”的程度与哪些要素有关。大多数学生通过所画的两个椭圆长轴相同、短轴不同,从而“扁”的程度不同,很自然地回答这与有关,圆的形状是完全相同的,而椭圆的形状是否完全相同?如何刻画椭圆的“圆扁”度呢?
学生自主探究(预设:可以创造错误认识,a越大越扁?b越大越圆?联想椭圆定义当2a定时,焦点逐渐靠近顶点,椭圆会怎么样?焦点逐渐靠近中心,又会怎么样?)
切入事先准备好的几何画板展示,固定长轴,移动交点,看变化。教师通过多媒体展示椭圆随着离心率逐渐接近0越圆而越接近1而越扁的动画
过程。e越大,椭圆越扁,越小越圆。讲清楚e是一个比值圆扁度用什么刻画?为什么不b用。a此外,在以下几个方面我还需要进一步改进:一是课堂的节奏还要稍微慢一点,比如对焦点在轴时椭圆的几个性质的给出,都是师提问生齐答,在这个过程中不少反应慢一点的同学没有足够的时间去思考,被忽略掉了,而如果把这个环节换成小组合作学习、讨论交流的方式来进行,放手把主动权交给学生,效果可能会更好,也更符合新课改的理念。二是教学语言还需要不断锤炼,因为数学老师的语言是否准确、精炼,会对学生的逻辑思维产生潜移默化的影响,要力图用清晰优美的语言艺术去感染学生。
比较过去自己曾经历过的刻板、严肃的灌输式教学,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,教学中要关注学生是否积极地参与到发现问题、分析问题、解决问题的探索过程中去,是否能够达到掌握知识,提高能力的目的是否收到了理想的教学效果。教学过程中要尊重学生的自我发现,多角度的给学生以鼓励和肯定。
我会以此为契机,在平日的教学实践中不断思考和创新,不断成长和进步!
高中数学免费教案(13篇万能范文)




