教育巴巴 > 高中教案 > 数学教案 >

高中数学教案案例

时间: 新华 数学教案

编写教案可以使教师在教学前有充分的准备,免除临时抱佛脚的情况出现。怎么写出优秀的高中数学教案案例?这里给大家分享高中数学教案案例,方便大家学习。

高中数学教案案例篇1

一、说教材

(1)说教材的内容和地位

本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

(2)说教学目标

根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

(3)说教学重点和难点

依据课程标准和学生实际,我确定本课的教学重点为

教学重点:集合的基本概念及元素特征。

教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

二、说教法和学法

接下来则是说教法、学法

教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

三、说教学过程

接着我来说一下最重要的部分,本节课的教学过程:

这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。多层次、多角度地加深对概念的理解。提高学生学习的兴趣,以达到良好的教学效果。

第一环节:创设问题情境,引入目标

课堂开始我将提出两个问题:

问题1:班级有20名男生,16名女生,问班级一共多少人?

问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

这里我会让学生以小组讨论的.形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

很自然地进入到第二环节:自主探究

让学生阅读教材,并思考下列问题:

(1)有那些概念?

(2)有那些符号?

(3)集合中元素的特性是什么?

安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

让学生自主探究之后将进入第三环节:讨论辨析

小组合作探究(1)

让学生观察下列实例

(1)1~20以内的所有质数;

(2)所有的正方形;

(3)到直线的距离等于定长的所有的点;

(4)方程的所有实数根;

通过以上实例,辨析概念:

(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

(2)表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

小组合作探究(2)——集合元素的特征

问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

集合中的元素必须是确定的

问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

集合中的元素是不重复出现的

问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的

我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

小组合作探究(3)——元素与集合的关系

问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

a属于集合A,记作a∈A

问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

a不属于集合A,记作aA

小组合作探究(4)——常用数集及其表示方法

问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

自然数集(非负整数集):记作N

正整数集:

整数集:记作Z

有理数集:记作Q实数集:记作R

设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

第四环节:理论迁移变式训练

1.下列指定的对象,能构成一个集合的是

①很小的数

②不超过30的非负实数

③直角坐标平面内横坐标与纵坐标相等的点

④π的近似值

⑤所有无理数

A、②③④⑤B、①②③⑤C、②③⑤D、②③④

第五环节:课堂小结,自我评价

1.这节课学习的主要内容是什么?

2.这节课主要解释了什么数学思想?

设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

第六环节:作业布置,反馈矫正

1.必做题课本习题1.1—1、2、3.

2.选做题已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a的值。

设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

四、板书设计

好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

集合

1.集合的概念

2.集合元素的特征

(学生板演)

3.常见集合的表示

4.范例研究

高中数学教案案例篇2

教学目标

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养学生观察、归纳能力。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:

①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.21,2

二、1、预习内容:课本P116例2P117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学教案案例篇3

圆的方程

教学目标

(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.

(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.

(4)掌握直线和圆的位置关系,会求圆的切线.

(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.

教学建议

教材分析

(1)知识结构

(2)重点、难点分析

①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.

②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.

教法建议

(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.

(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.

(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.

(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.

教学设计示例

圆的一般方程

教学目标:

(1)掌握圆的一般方程及其特点.

(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

(3)能用待定系数法,由已知条件求出圆的一般方程.

(4)通过本节课学习,进一步掌握配方法和待定系数法.

教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

(2)用待定系数法求圆的方程.

教学难点:圆的一般方程特点的研究.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

前边已经学过了圆的标准方程

把它展开得

任何圆的方程都可以通过展开化成形如

的方程

【问题1】

形如①的方程的曲线是否都是圆?

师生共同讨论分析:

如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

显然②是不是圆方程与 是什么样的数密切相关,具体如下:

(1)当 时,②表示以 为圆心、以 为半径的圆;

(2)当 时,②表示一个点 ;

(3)当 时,②不表示任何曲线.

总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

圆的一般方程的定义:

当 时,①表示以 为圆心、以 为半径的圆,

此时①称作圆的一般方程.

即称形如 的方程为圆的一般方程.

【问题2】圆的一般方程的特点,与圆的标准方程的异同.

(1) 和 的系数相同,都不为0.

(2)没有形如 的二次项.

圆的一般方程与一般的二元二次方程

相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

圆的一般方程与圆的标准方程各有千秋:

(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

【实例分析】

例1:下列方程各表示什么图形.

(1) ;

(2) ;

(3) .

学生演算并回答

(1)表示点(0,0);

(2)配方得 ,表示以 为圆心,3为半径的圆;

(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.

例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.

分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.

解:设圆的方程为

因为 、 、 三点在圆上,则有

解得: , ,

所求圆的方程为

可化为

圆心为 ,半径为5.

请同学们再用标准方程求解,比较两种解法的区别.

【概括总结】通过学生讨论,师生共同总结:

(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.

(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.

下面再看一个问题:

例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.

解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.

化简得

点 在曲线上,并且曲线为圆 内部的一段圆弧.

【练习巩固】

(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)

(2)求经过三点 、 、 的圆的方程.

分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .

(3)课本第79页练习1,2.

【小结】师生共同总结:

(1)圆的一般方程及其特点.

(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.

(3)用待定系数法求圆的方程.

【作业】课本第82页5,6,7,8.

高中数学教案案例篇4

【高考要求】:三角函数的有关概念(B).

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

【知识复习与自学质疑】

一、问题.

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习.

1.给出下列命题:

(1)小于的角是锐角;(2)若是第一象限的角,则必为第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。其中正确的命题的序号是

2.设P点是角终边上一点,且满足则的值是

3.一个扇形弧AOB的面积是1,它的周长为4,则该扇形的中心角=弦AB长=

4.若则角的终边在象限。

5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是

6.若是第三象限的角,则-,的终边落在何处?

【交流展示、互动探究与精讲点拨】

例1.如图,分别是角的终边.

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在OM位置,终边在ON位置的所有角的集合.

例2.(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点A,求的值。

例3.若,则在第象限.

例4.若一扇形的周长为20,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角的终边上一点的坐标为,则角的弧度数为.

2、若,又是第二,第三象限角,则的取值范围是.

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.

4、已知点P在第三象限,则角终边在第象限.

5、设角的终边过点P,则的值为.

6、已知角的终边上一点P且,求和的值.

【迁移应用】

1、经过3小时35分钟,分针转过的角的弧度是.时针转过的角的弧度数是.

2、若点P在第一象限,则在内的取值范围是.

3、若点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点坐标为.

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值.

高中数学教案案例篇5

1、教学目标:

一、借助单位圆理解任意角的三角函数的定义。

二、根据三角函数的定义,能够判断三角函数值的符号。

三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

2、教学重点与难点:

重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

难点:任意角的三角函数概念的建构过程。

授课过程:

一、引入

在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

二、创设情境

三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

问题:

1、锐角三角函数能否表示成第二种比值方式?

2、点P能否取在终边上的其它位置?为什么?

3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

练习:计算的各三角函数值。

三、任意角的三角函数的定义

角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

评价学生给出的定义。给出任意角三角函数的定义。

四、解析任意角三角函数的定义

三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

五、三角函数的应用。

1、已知角,求a的三角函数值。

2、已知角a终边上的一点P(-3,-4),求各三角函数值。

以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

1、已知角如何求三角函数值?

2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

4、探究:三角函数的值在各象限的符号。

六、小结及作业

教案设计说明:

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

高中数学教案案例篇6

一、教材分析:

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二、目标分析:

教学重点.难点

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

三.教法分析

1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.

四.过程分析

(一)创设情景,揭示课题

1.教师首先提出问题:

(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价.

2.活动:

(1)列举生活中的集合的例子;

(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;

(2)我国古代的.四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合A?{x?N1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1A组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

五.板书分析

高中数学教案案例篇7

1.树立新型的数学教学观念,明确数学的实用意义

高中数学是人类对社会认识的重要方面,也是一门极具实用性的基础性学科。教师在进行数学教学的过程中,要将数学知识背后蕴含的文化背景与文化知识传达给学生,让学生从基础的数学知识中掌握真正的数学思维,学会运用数学技巧解决生活中的实际问题,要让学生明确数学所蕴含的社会意义,以更好地培养数学理念,使学生更好地运用数学,对数学产生真正的兴趣。

2.提升教师的教学素质,转变教师角色定位

在新课程标准下,教师在数学教学中的角色由控制者转变为引导者。因此,教师必须要学会提升自身的素质,转变教学观念,通过良好的师风师德引导学生积极投入到学习过程中。学校要定期进行培训,加强学校之间的交流,通过互相学习、合作提升教师的素质,促进教师角色的转变。教师要在教学的过程中重视对学生个性的激发以及学生创新精神的鼓励,教师要引导学生主动发表自身对学习问题的看法,要让学生成为真正的主人,促进学生多元思维的发展。

3.合理运用信息技术,培养学生的科学思维

高中数学教学过程中,信息技术的应用必不可少,但是也不能过分强调信息技术的作用。教师在教学过程中,要充分把握数学知识的特点,要将抽象的数学概念、知识框架等内容通过多媒体技术转化为形象具体的画面以利于学生的理解和吸收,但是对于那些需要进行基础性训练、推理论证的问题,要让学生亲手进行实践分析。教师可以利用科学性的计算器或者技术教育平台,推广计算机技术在数学领域的运用,要充分重视学生的地域性特征,在学生对计算机技术已经形成基本认识的基础上进行新课标内容的讲解和分析,防止出现盲目追求进度,忽视学生基础等问题的发生。

高中数学教案案例篇8

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

四、教学目标

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣。

五、教学重点与难点:

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出例题1:

(1)已知A(-2,0),B(2,0)动点M满足MA+MB=2,则点M的轨迹是()。

(A)椭圆(B)双曲线(C)线段(D)不存在

(2)已知动点M(x,y)满足(x1)2(y2)23x4y,则点M的轨迹是()。

(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子3x4y5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

(二)理解定义、解决问题

例2:

(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2),求PA

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

练习:

设点Q是圆C:(x1)2225AB的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1、圆锥曲线的第一定义

2、圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2、PF1PF22P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的PO取值范围。

3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4、例题:

(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求MA+MF的最小值。

(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当AMMF最小时,求M点的坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使PM+FM最小。

5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求MA+MB的最小值与最大值。

七、教学反思

1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教案案例篇9

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

在分析应用题的`解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。

要特别注意,不加特殊说明,本章不研究重复排列问题。

③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:

(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;

(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

高中数学教案案例篇10

数列的极限教学设计

西南位育中学肖添忆

一、教材分析

《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。

课本在内容展开时,以观察n时无穷等比数列an列anqn,(q1)与an1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。在n由定义给出两个常用极限。但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。

二、学情分析

通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。

由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。这与数学中“极限”的含义相差甚远。在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。

三、教学目标与重难点教学目标:

1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;

2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;

3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。教学重点:理解数列极限的概念

教学难点:正确理解数列极限的描述性定义

四、教学策略分析

在问题引入时着重突出“万世不竭”与“讲台可以走到”在认知上的矛盾,激发学生的学习兴趣与求知欲,并由此引出本节课的学习内容。在极限概念形成时,结合极限概念的发展史展开教学,让学生意识到数学理论不是一成不变的,而是不断发展变化的。数学的历史发展过程与学生的认知过程有着一定的相似性,学生在某些概念上的进展有时与数学史上的概念进展平行。比如部分学生的想法与许多古希腊的数学家一样,认为无限扩大的正多边形不会与圆周重合,它的周长始终小于其外接圆的周长。教师通过梳理极限发展史上的代表性观点,介绍概念的发展历程以及前人对此的一系列观点,能帮助学生发现自己可能也存在着类似于前人的一些错误想法。对数学发现的过程以认知角度加以分析,有助于学生学习数学家的思维方式,了解数学概念的发展,进而建构推理过程,使学生发生概念转变。在课堂练习诊断部分,不但要求回答问题,还需对选择原因进行辨析,进而强化概念的正确理解。

五、教学过程提纲与设计意图1.问题引入

让一名学生从距离讲台一米处朝讲台走动,每次都移动距讲台距离的一半,在黑板上写出表示学生到讲台距离的数列。这名学生是否能走到讲台呢?类比“一尺之捶,日取其半,万世不竭”,庄子认为这样的过程是永远不会完结的,然而“讲台永远走不到”这一结果显然与事实不同,要回答这一矛盾,让我们看看历史上的数学家们是如何思考的。【设计意图】

改编自芝诺悖论的引入问题,与庄子的“一尺之捶”产生了认知冲突,激发学生的学习兴趣与求知欲,并引出本节课的学习内容

2.极限概念的发展与完善

极限概念的发展经历了三个阶段:从早期以“割圆术”“穷竭法”为代表的朴素极限思想,到极限概念被提出后因“无穷小量是否为0”的争论而引发的质疑,再经由柯西、魏尔斯特拉斯等人的工作以及实数理论的形成,严格的极限理论至此才真正建立。【设计意图】

教师引导学生梳理极限发展史上的代表性观点,了解数学家们提出观点的时代背景,对照反思自己的想法,发现自己可能也存在着类似于前人的一些错误想法。教师在比较概念发展史上被否定的观点与现今数学界认可的观点时,会使学生产生认知冲突。从而可能使学生发生概念转变,抛弃不正确的、不完整的、受限的想法,接受新的概念。在数学教学中,结合数学史展开教学可以让学生意识到数学理论不是一成不变的,而是不断发展变化的,从而提升学生概念转变的动机。

3.数列极限的概念

极限思想的产生最早可追溯于中国古代。极限理论的完善出于社会实践的需要,不是哪一名数学家苦思冥想得出,而是几代人奋斗的结果。极限的严格定义经历了相当漫长的时期才得以完善,它是人类智慧高度文明的体现,反映了数学发展的辩证规律。今天的主题,极限的定义,援引的便是柯西对于极限的阐述。

定义:在n无限增大的变化过程中,如果无穷数列{an}中的an无限趋近于一个常数A,那么A叫做数列{an}的极限,或叫做数列{an}收敛于A,记作limanA,读作“n趋向于

n无穷大时,an的极限等于A”。

在数列极限的定义中,可用an-A无限趋近于0来描述an无限趋近于A。

如前阐述,柯西版本的极限定义虽然不是最完美的,但作为摆脱几何直观的首次尝试,也是历史上一个较为成功的版本,在历史上的地位颇高。有时,我们也称其为数列极限的描述性定义。

【设计意图】

通过比较历史上不同观点下的极限定义,教师呈现数列极限的描述性定义,分析该定义的历史意义,让学生进一步明确数列极限的含义。4.课堂练习诊断

由数列极限的定义得到三个常用数列的极限:(1)limCC(C为常数);

n(2)lim10(nN__);nnnn(3)当q判断下列数列是否存在极限,若存在求出其极限,若不存在请说明理由

20--20--(1)an;

nsinn;n(3)1,1,1,1,,1(2)an(4)an4(1n1000)

4(n1001)11-,n为奇数(5)ann

1,n为偶数注:

(1)、(2)考察三个常用极限

(3)考查学生是否能清楚认识到数列极限概念是基于无穷项数列的背景下探讨的。当项数无限增大时,数列的项若无限趋近于一个常数,则认为数列的极限存在。因此,数列极限可以看作是数列的一种趋于稳定的发展趋势。有穷数列的项数是有限的,因而并不存在极限这个概念。

(4)引用柯西的观点,解释此处无限趋近的含义,是指随着数列项数的增加,数列的项与某一常数要多接近就有多接近,由此得出结论:数列极限与前有限项无关且无穷常数数列存在极限的。

(5)扩充对三种趋近方式的理解:小于A趋近、大于A趋近和摆动趋近。本题中的数列没有呈现出以上三种方式的任意一种。避免学生将趋近误解为项数与常数间的差距不断缩小。练习若A=0.9+0.09+0.009+0.0009+...,则以下对A的描述正确的是_____.A、A是小于1的最大正数

B、A的精确值为1C、A的近似值为1

选择此选项的原因是_________①由于A的小数位都是9,找不到比A大但比1小的数;

②A是由无限多个正数的和组成,它们可以一直不断得加下去,但总小于2;

③A表示的数是数列0.9,0.99,0.999,0.9999,...的极限;

④1与A的差等于0.00…01。

注:此题是为考查学生对于无穷小量和极限概念的理解。由极限概念的发展史可以看出,数学家们曾长时期陷入对无穷小概念理解的误区中,极大地阻碍了对极限概念的理解。学生学习极限概念时可能也会遇到类似的误区。

练习顺次连接△ABC各边中点A1、B1、C1,得到△A1B1C1。取△A1B1C1各边中点A2、B2、C2并顺次连接又得到一个新三角形△A2B2C2。再按上述方法一直进行下去,那么最终得到的图形是_________.A、一个点

B、一个三角形

C、不确定

选择此选项的原因是_________.①

无限次操作后所得三角形的面积无限趋近于0但不可能等于0。②

当操作一定次数后,三角形的三点会重合。

该项操作可以无限多次进行下去,因而总能作出类似的三角形。

无限次操作后所得三角形的三个顶点会趋向于一点。

注:此题从无限观的角度考察学生对极限概念的的理解。学生容易忽视极限概念中的实无限,他们在视觉上采用无穷叠加的形式,但是会受最后一项的惯性思维,导致采用潜无限的思辨方式。所谓实无限是指把无限的整体本身作为一个现成的单位,是可以自我完成的过程或无穷整体。相对地,潜无限是指把无限看作永远在延伸着的,一种变化着成长着不断产生出来的东西。它永远处在构造中,永远完成不了,是潜在的,而不是实在的。持有潜无限观点的学生在理解极限概念时,会将极限理解为是一个渐进过程,或是一个不可达到的极值。

通过习题,分析总结以下三个注意点:

(1)数列{an}有极限必须是一个无穷数列,但无穷数列不一定有极限存在;

1}可以说随着n的无限增大,n1数列的项与-1会越来越接近,但这种接近不是无限趋近,所以不能说lim1;

nn(2)“无限趋近”不能用“越来越接近”代替,例如数列{(3)数列{an}趋向极限A的过程可有多种呈现形式。

【设计意图】

通过例题与选项原因的分析,消除关于数列极限理解的三类误区:

第一类是将数列极限等同于如下的三种概念:渐近线、最大限度或是近似值。第二类是学生对于数列趋向于极限方式的错误认知。第三类是对于无限的错误认知。

5.课堂小结

极限的描述性定义与注意点三个常用的极限

6.作业布置

1>任课老师布置的其他作业

2>学习魏尔斯特拉斯的数列极限定义,并用该定义证明习题的第一第二小问【设计意图】

通过与数列极限相关的延伸问题,完善极限概念的体系,为学生创设课后自主探究平台,感受静态定义中凝结的数学家的智慧。

高中数学教案案例篇11

教材第108页例1,练习二十四第1、2题。

二、教材分析:

“渗透集合知识”是人教版《义务教育课程试验教科书数学》三年级下册第九单元《数学广角》第一课时的教学内容。小学生从一开始学习数学,就已经在运用集合的思想方法了。例如,学生在一年级学习数数时,把1个人、2朵花、3枝铅笔等等用一条封闭的曲线圈起来表示,这样表示的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类实际上就是集合理论的基础。本节课教学的例1是借助学生熟悉的题材,渗透集合的思想,并利用直观图的方式求出两个小组的总人数。在教学例1时,我注重了三个方面的问题。(1)集合的理解。(2)有关计算。(3)巩固练习。基于以上的安排,结合新课程标准,我确定了本节课的教学目标:

三、教学目标:

(1)知识与技能:初步体会集合的思想方法,能够借助直观图及利用集合的思想方法解决简单的实际问题。

(2)过程与方法:使学生能借助具体内容,体会集合的思想方法,利用集合的思想方法去解决问题。

(3)情感态度与价值观:培养学生观察思考问题的能力。

四、重难点

重点:初步体会集合的思想方法。

突破方法:借助具体内容,初步体会集合的思想方法。

难点:用集合直观图来表示事物。

突破方法:通过动手操作,利用集合直观图来表示事物。

五、教法学法

集合问题属人教课改版小学数学第六册的智力游戏,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的集合问题有较简单的,一题多法的,还有课后让学生继续研究集合问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;同时由于集合问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作活动中领会集合问题的基本结构,并根据确立的教学目标和学生的认知特点,在教学设计中,我将特别注重以下几个方面:

1、创设情境,适时引导

数学来源于生活,并应用于生活。我通过学生熟悉的队列问题导入新课,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参与学习过程。

2、设置认知冲突,感知体验集合图

以“参加两个兴趣小组的一共有多少人?”这一问题冲突为线索,让学生想想可能会出现的情况,当学生解答过程中出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。

六、教学准备:导学卡、数字卡片。

七、教学流程:

1、创设情景(引出目标)

2、自主探究(感知目标)

3、巩固加深(巩固目标)

4、课堂小结(再现目标)

(一)情境引入、小故事引出大学问(理解重复)

我是用了一道同学们儿时的问题,在站队的时候,有一个小朋友从左数是第5个,从右数还是第5个,算一算这个队一共多少个同学?这个情景的设计,是让学生充分理解重复。把枯燥的数学知识贯穿于小学生实际生活当中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

(二)探索新知(体会集合)

1、在教学例1时,我大胆的将例题进行了改写,我没有按照常规的教学方法先出示统计表告诉学生参加语文兴趣小组和数学兴趣小组的学生名单,让他们通过观察统计表得出信息,参加语文小组的有5人,参加数学小组的有7人,然后让学生提出问题并解决问题。而是直接告诉了学生参加两个兴趣小组的人数,然后让他们算一算参加两个小组的一共有多少人?学生列出算式5+7=12(人),此时我不去及时评判,目的在于我要让学生猜想可能会发生的情况,然后等学生掌握了新知识后,自己去发现、自己去解正,为锻炼学生的判断能力有意设局的。

2、接下来引导学生用图示的方法表示两个课外小组的人员组成情况。在这个环节我设计了一个对号入座的活动,请一名男生和一名女生到台前去贴号,再贴号的过程中当问到有什么好办法能一眼看出来两个组的人数时?很自然的就引出了集合圈,让学生理解了集合的意义,导出了课题《集合》。很快学生发现,既参加了语文小组又参加了数学小组的两名学生,安排在中间的位置是最合适的,这样就组成三个部分,如中间部分表示既参加语文兴趣小组又参加数学兴趣小组的同学,另外两边一边是只参加语文兴趣小组的同学,一边是只参加数学兴趣小组的同学。

3、经过学生和教师共同完成集合,再次的确定两个学生既参加了语文小组又参加了数学小组,计算时重复了,进而让学生进行小组合作,讨论交流得出在计算参加语文小组和数学小组总人数时,一定要减去重复的数据2,得出正确的算式5+7—2=12(人),在这个过程中,还要体现算法的多样化,并不是只有这一种列示方法。这一过程,锻炼了学生的观察能力和思维能力以及运用已有知识解答新问题的&39;能力,培养了学生运用数学知识的意识;不但知其然,而且知其所以然。

(三)巩固加深

这是教学中不可缺少的环节,这一环节是学生巩固知识,形成技能,技巧,发展智力的重要过程,还要确保学习任务的圆满完成。因此,练习的巩固我主要设计了两道习题。第一道题让学生把动物的序号填在合适的位置,一边是只会游泳的,一边是只会飞的,还要让学生说出中间部分表示的是什么?第二题是让学生算算文具商店两天一共进了多少种货?这道题中两天进的货是以图画的形式出现的,这就要求学生在完成的过程中一定要认真观察,养成细心的好习惯。

(四)总结

让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。只要学生在平时多观察,就会发现在日常生活中,有很多事物具有双重性,或者在数量上是重复的。我们可以运用画集合圈的方法来分析类别,再计算它们的数量;但是在计算总数时必须减去重复的数量;还可以将左中右圈里的数量相加。

高中数学教案案例篇12

教学目标:

1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

2.会求一些简单函数的反函数.

3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

教学重点:求反函数的方法.

教学难点:反函数的概念.

教学过程:

教学活动

设计意图一、创设情境,引入新课

1.复习提问

①函数的概念

②y=f(x)中各变量的意义

2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

3.板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

二、实例分析,组织探究

1.问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2.问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3.渗透反函数的概念.

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

三、师生互动,归纳定义

1.(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

2.引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因.

3.两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)

4.函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1.(投影例题)

【例1】求下列函数的反函数

(1)y=3x-1 (2)y=x 1

【例2】求函数的反函数.

(教师板书例题过程后,由学生总结求反函数步骤.)

2.总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y).

2° 把x=f(y)中 x与y互换得.

3° 写出反函数的定义域.

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________.

(3)(x<0)的反函数是__________.

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

五、巩固强化,评价反馈

1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=-2x 3(xR) (2)y=-(xR,且x)

( 3 ) y=(xR,且x)

2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

六、作业

习题2.4 第1题,第2题

进一步巩固所学的知识.

教学设计说明

"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

高中数学教案案例篇13

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的`公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1×q^(n-1)

若通项公式变形为an=a1/q-q^n(n∈N-),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。

(2)任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

(5)等比求和:Sn=a1+a2+a3+.......+an

①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②当q=1时,Sn=n×a1(q=1)

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

高中数学教案案例篇14

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

高中数学教案案例篇15

第二教时教材:

1、复习

2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:

一、复习:(结合提问)

1.集合的概念含集合三要素

2.集合的表示、符号、常用数集、列举法、描述法

3.集合的分类:有限集、无限集、空集、单元集、二元集

4.关于“属于”的概念

二、例一用适当的方法表示下列集合:

1.平方后仍等于原数的数集解:{x x2=x}={0,1}

2.比2大3的数的集合解:{x x=2+3}={5}

3.不等式x2-x-6<0的整数解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}

4.过原点的直线的集合解:{(x,y)y=kx}

5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}

6.使函数y=有意义的实数x的集合解:{x x2+x-60}={x x2且x3,xR}

三、处理苏大《教学与测试》第一课含思考题、备用题

四、处理《课课练》

五、作业《教学与测试》第一课练习题

高中数学教案案例(例文15篇)

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
100137