人教版八年级下册数学教案
在教学工作者实际的教学活动中,很有必要精心设计一份教案,以下是小编整理的一些八年级下册数学教案,仅供参考。
人教版八年级下册数学教案【篇1】
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的.“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题
2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通
1 / 5
过作等腰三角形底边的高来证明“等边对等角”.
要求学生完成,一位学生的过程如下:
已知:在△ABC中, AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。
2:引入新课
(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教师用多媒体演示:
定理 斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
2 / 5
22A'B'
从而肯定了第一位同学通过作底边的高证明两个三角形
全等,从而得到“等边对等角”的证法是正确的.
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题
(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。
3:做一做
问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
3 / 5
BEADCDA'D'BB'
人教版八年级下册数学教案【篇2】
教学目标
1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;
2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;
3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.
教学重点和难点
重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.
难点:不等式的解集的概念.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)
2.用不等式表示:
(1)x的3倍大于1; (2)y与5的差大于零;
(3)x与3的和小于6; (4)x的小于2.
(3)当x取下列数值时,不等式x+3<6是否成立?
-4,3.5,-2.5,3,0,2.9.
((2)、(3)两题用投影仪打在屏幕上)
二、讲授新课
1.引导学生运用对比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向学生提出如下问题:
不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?
(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的'解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)
然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.
最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)
一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.
不等式一般有无限多个解.
求不等式的解集的过程,叫做解不等式.
3.启发学生如何在数轴上表示不等式的解集
我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)
在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)
记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.
即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.
此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.
三、应用举例,变式练习
例1 在数轴上表示下列不等式的解集:
(1)x≤-5; (2)x≥0; (3)x>-1;
(4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.
解(1),(2),(3)略.
(4)在数轴上表示1≤x≤4,如下图
(5)在数轴上表示-2<x≤3,如下图
(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)
例2 用不等式表示下列数量关系,再用数轴表示出来:
(1)x小于-1; (2)x不小于-1;
(3)a是正数; (4)b是非负数.
解:(1)x小于-1表示为x<-1;(用数轴表示略)
(2)x不小于-1表示为x≥-1;(用数轴表示略)
(3)a是正数表示为a>0;(用数轴表示略)
(4)b是非负数表示为b≥0.(用数轴表示略)
(以上各小题分别请四名学生生回答,教师板书,最后,请学生在笔记本上画数轴表示)
例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)
解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.
(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)
练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.
(2)在数轴上表示下列不等式的解集:
①x>3; ②x≥-1; ③x≤-1.5;
④0≤x<5; ⑤-2<x≤2; ⑥-2<x<.
(3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.
(4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?
自然数解是什么?(__表示选作题)
四、师生共同小结
针对本节课所学内容,请学生回答以下问题:
1.如何区别不等式的解,不等式的解集及解不等式这几个概念?
2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.
3.记号“≥”、“≤”各表示什么含义?
4.在数轴上表示不等式解集时应注意什么?
结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.
五、作业
1.不等式x+3≤6的解集是什么?
2.在数轴上表示下列不等式的解集:
(1)x≤1; (2)x≤0; (3)-1<x≤5;
(4)-3≤x≤2; (5)-2<x<; (6)-≤x<.
3.求不等式x+2<5的正整数解.
课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.
在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.
人教版八年级下册数学教案【篇3】
一、教学目标
1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。
2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。
3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。
4.引导学生不断小结运算方法和技巧,提高运算能力。
二、教学重点和难点
1.重点:分式的加减运算。
2.难点:异分母的分式加减法运算。
三、教学方法
启发式、分组讨论。
四、教学手段
幻灯片。
五、教学过程
(一)引入
1.如何计算:2.如何计算:3.若分母不同如何计算?如:
(二)新课
1.类比分数的'通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2.通分的依据:分式的基本性质。
3.通分的关键:确定几个分式的公分母。
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
例1通分:
(1)解:∵最简公分母是,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。
(2)解:
例2通分:
(1)解:∵最简公分母的是2x(x+1)(x—1),
小结:当分母是多项式时,应先分解因式。
(2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),
练习:教材P,79中1、2、3。
(三)课堂小结
1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。
人教版八年级下册数学教案【篇4】
一、教学内容
1、教学内容分析:二次根式是在数的开方的基础上展开的,是算术平方根的抽象与扩展,同时又为勾股定理和解一元二次方程打下基础.
2、学生情况分析:本节课是二次根式的第一课时,是在学生学方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.对此班级中已初步形成合作交流、敢于探索与实践的良好学风,学生间互相提问的互动气氛较浓.
二、教学设计理念
根据基础教育课程改革的具体目标,结合我校初二学生的实际情况,改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,实施“三学六步”课堂改革教学模式.
三、教学目标
1、知识与技能:
(1)了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围;
(2)理解二次根式的非负性.
2、过程与方法:通过对学、群学等方式培养学生分析、概括等能力.
情感态度与价值观:培养学生认真参与、积极交流的主体意识和乐于探索、积极钻研的科学精神、合作精神,激发学生学习数学的兴趣.
四、教学重点、难点
1、教学重点:了解二次根式的概念,二次根式有意义的条件,并会求二次根式中所含字母的取值范围
2、教学难点:理解二次根式的双重非负性
五、教学方法、手段
1、教学方法:探究法、讨论法、发现法
2、教学手段:课件(ppt)
六、教学过程
(一)创设情境,导入新课
问题1 你能用带有根号的的式子填空吗?
(1)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系,如果用含有h 的式子表示 t ,则t= _____.
(2)下球体过球心的横截面面积为S,则横截面圆形的半径r为 .
(3)面积为3 的正方形的边长为_____,面积为S 的正方形的边长为_____.
【师生互动】:学生独立思考,用算术平方根表示结果,教师适当引导和评价.
【设计意图】:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
探究新知,讲授新课
1.抽象概括,形成概念
问题2 上面所得的代数式:,它们的共同特点是什么?
【师生互动】:学生独立思考并积极发言,教师归纳总结.
【设计意图】:通过归纳总结引出二次根式的概念.
问题3 根据以前所学知识,理解二次根式的定义,并且要注意什么.
【师生互动】:学生小组讨论并且小组长做好记录,老师归纳总结.
【设计意图】:加深对二次根式的理解.
2.辨析概念,应用巩固
问题4 (辩一辩) 判断给出式子是不是二次根式:①;
②;③;④;⑤;⑥
【师生互动】:学生独立思考并积极发言,并对于他们的答案做出正确地评价,给予必要的鼓励.
【设计意图】:该题是利用抢答来调动课堂气氛,理解二次根式的定义.
问题5 根据要求编写二次根式:
(1)请写出一个你喜欢的二次根式;
请写出一个被开方数含x的二次根式.;
请你写出一个被开方数含x,且当x为任何实数的`二次根式.
【师生互动】:学生独立思考并积极发言,其他同学来检验是否编写正确.
【设计意图】:设计开放性题开拓学生思维,进一步加深对二次根式的理解.
灵活运用,巩固提高
问题6 当x是怎样的实数时,下列各式在实数范围内有意义:
【师生互动】:
(1)学生口答,老师板书规范解题格式,(2)(3)学生演板.学生完成之后小组讨论结果的正确性,同时对演板的同学做出评价,老师再适时补充,(2)(3)评价增加一道变式,让学生能灵活运用知识.最后再归纳这类式子有意义要注意:
(1)二次根式的被开方数为非负数;
(2)分母中含有字母时,要保证分母不为0.
【设计意图】:本题强化学生对二次根式被开方数为非负数的理解,同时考查学生的灵活运用的能力,训练学生的思维.
发散思维,拓展延伸
问题7 已知实数x,y满足,求:
(1)x的取值范围;
(2)以x,y的值为两边长的等腰三角形的周长.
【师生互动】:学生先独立思考,再小组合作,将答案写在白板上,并请小组两位成员上台展示,其他同学提出质疑,补充,老师适当引导点评.
【设计意图】:本题第一问进一步加深学生对二次根式被开方数为非负数的理解;第二问渗透分类思想,通过小组合作,上台展示体现学生为主体,发挥学生的能动性.
问题8 (走进中考)已知,则 p(x,y)是第 象限.
【师生互动】:学生先独立思考讲解思路,老师适当点评.
【设计意图】:本题主要考察
课堂小结,盘点收获
一路下来,我们结识了很多新知识,你能谈谈自己的收获吗?说一说,让大家一起来分享.
【师生互动】:学生举手发言,老师点评并鼓励.
【设计意图】:学生总结,互相取长补短,再一次突出本节课的学习重点,帮助学生把握知识要点,理清知识脉络,体会数学中的分类思想.
作业设计,巩固提高
必做题:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(写序号)
代数式有意义,则字母x的取值范围是 .
3.代数式的值为0,则a= .
选做题:1.已知,则的值为 .
2.若式子 有意义,则P(a,b)在第 象限.
小组合作题:
1.已知m,n满足 ,求:(1)m,n的值.
(2)将m,n的值 代入并化简:
(3)请选一个你喜欢的x的值代入求值.
【设计意图】:气氛通过分层作业,教师能及时了解学生对本节知识的掌握情况.必做题和选做题如果上课有时间打算用砸金蛋的形式调动课堂.
(六)板书设计
16.1.1 二次根式 定义:形如 的式子叫做 二次根式 注:(双重非负性) (老师板书) (学生演板)
人教版八年级下册数学教案【篇5】
学习目标
1、能说出约分的意义和步骤。
2、能说出最简分式的意义。
3、能说出分式的乘、除和乘方法则,并能用式子表示。
4、能熟练地进行分式的乘除和乘方运算。
5、会归纳总结整数指数幂的运算性质。
6、能熟练地运用幂的运算性质进行计算。
主体知识归纳
1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。
3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。
4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的'积做积的分母。
5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。
7、整数指数幂的运算性质可归纳如下
(1)am·an=am+n(m、n都是整数);
(2)(am)n=amn(m、n都是整数);
(3)(ab)n=anbn(n是整数)、
基础知识精讲
1、正确理解分式约分的意义
(1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的分子与分母的公因式约去。
(2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。
2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:
(1)若分子、分母都是几个因式乘积的形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、
(2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、
3、进行分式的乘除运算时,应注意以下几点:
(1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、
(2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。
(3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。
(4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。
人教版八年级下册数学教案【篇6】
教学目标:
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
教学重点:
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
教学难点:
解分式方程的一般步骤。
教学过程:
复习引入:
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程
3、解方程(学生板演)
讲授新课:
1、由上述学生的板演归纳出解分式方程的.一般步骤
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
(3)检验:将所得的解代入原方程的最简公分母,若最简公分母为0,则为增根,必须舍去;若不为0,则为原方程的根、
2、范例讲解
(学生尝试练习后,教师讲评)
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)
2、解分式方程的步骤、
巩固练习:P1471t,2t、
课堂小结:解分式方程的一般步骤
布置作业:见作业本。
人教版八年级下册数学教案【篇7】
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、观察下列算式:
⑴ ⑵
请写出分数的乘除法法则:
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
2、分式的.乘除法法则:(类似于分数乘除法法则)
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
3、分式乘方:即分式乘方,是把分子、分母分别乘方.
三、合作交流,解决问题:
1、计算:
⑴ ; ⑵
2、计算:
⑴ ; ⑵ .
4、计算:⑴ ⑵
四、课堂测控:
1、计算:
人教版八年级下册数学教案【篇8】
教学目标:
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.
2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;
3、使学生能够利用最简公分母进行验根.
教学重点:
可化为一元二次方程的分式方程的解法.
教学难点:
教学难点:解分式方程,学生不容易理解为什么必须进行检验.
教学过程:
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的`分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望.
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去.
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同.
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.
人教版八年级下册数学教案【篇9】
一、目标要求
1.理解掌握异分母分式加减法法则。
2.能正确熟练地进行异分母分式的加减运算。
二、重点难点
重点:异分母分式的加减法法则及其运用。
难点:正确确定最简公分母和灵活运用法则。
1.异分母分式的加减法法则:异分母分式相加减,先通分,变为同分母分式,然后再加减。用式子表示为:±=。
2.分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的'系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。
三、解题方法指导
【例1】计算:(1)++;
(2)-x-1;
(3)--。
分析:(1)把分母的各多项式按x的降幂排列,能先分解因式的将其分解因式,找最简公分母,转化为同分母的分式加减法。(2)一个整式与一个分式相加减,应把这个整式看作一个分母是1的式子来进行通分,注意-x-1=,要注意负号问题。
解:(1)原式=-+=-+====;
(2)原式======;
(3)原式=--===。
【例2】计算:。+++。
分析:此题若将4个分式同时通分,分子将是很复杂的,计算也是比较复杂的。各式的分母适用于平方差公式,所以采取分步通分的方法进行加减。
解:原式=++=++=+=+==。
四、激活思维训练
▲知识点:异分母分式的加减
【例】计算:-+。
分析:此题如果直接通分,运算势必十分复杂。当各分子的次数大于或等于分母的次数时,可利用多项式的除法,将其分离为整式部分与分式部分的和,再加减会使运算简便。
解:原式=[x+2-]-[x+3+]
+[+1]
=x+2--x-3-++1
=--+=====。
五、基础知识检测
1.填空题:
人教版八年级下册数学教案【篇10】
教学目标
(一)教学知识点
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求
使学生在总结学习经验和活动经验的过程中,体验因学习方法的`大力改进而带来的快乐,成为一个乐于学习的人.
●教学重点
1.分式的概念及其基本性质.
2.分式的运算法则.
3.分式方程的概念及其解法.
4.分式方程的应用.
●教学难点
1.分式的运算及分式方程的解法.
2.分式方程的应用.
●教学方法
讨论——交流法
讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.
●教具准备
投影片两张,实物投影仪
第一张:问题串,(记作§3.5A)
第二张:例题分析,(记作§3.5B)
●教学过程
Ⅰ.提出问题,回顾本章的知识.
出示投影片(§3.5A)
问题串:
1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.
2.分式的性质及有关运算法则与分数有什么异同?
3.如何解分式方程?它与解一元一次方程有何联系与区别?
[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.
(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)
[生]实际生活中的一些量可以用分式表示,例如(用实物投影)
某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?
[生]我们组来回答此问题,此人晨练时平均每分钟行米.
我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.
[生]应为m.
[师]同学们举的例子都很有特色,谁还能举.
[生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?
[生]原价为元.……
[师]都是分式.分式有什么特点?和整式有何区别?
[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.
[生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)
某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?
解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得
人教版八年级下册数学教案【篇11】
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的通分.
2、根据你的预习和理解找出:
①与的最简公分母是; ②与的最简公分母是;
③与最简公分母是;④与的最简公分母是.
★★如何确定最简公分母?一般是取各分母的所有因式的次幂的积
三、合作交流,解决问题:
1、通分:⑴与⑵,
2、通分:⑴与; ★⑵,.
四、课堂测控:
1、分式和的最简公分母是.分式和的最简公分母是.
2、化简:
3、分式,,,中已为最简分式的有( )
A、1个B、2个C、3个D、4个
4、化简分式的结果为( )
A、 B、 C、 D、
5、若分式的`分子、分母中的x与y同时扩大2倍,则分式的值( )
A、扩大2倍B、缩小2倍C、不变D、是原来的2倍
6、不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以( )
A、10 B、9 C、45 D、90
7、不改变分式的值,使分子、分母次项的系数为整数,正确的是( )
A、 B、 C、 D、
8、通分:
⑴与⑵与
人教版八年级下册数学教案【篇12】
教学目标
知识与技能:
1、能用描点法画出正比例函数的图象;
2、初步了解正比例函数图象的性质。
过程与方法:
通过画正比例函数的图象,探索正比例函数图象的性质,培养观察能力,体会用数形结合的方式思考问题。
情感态度与价值观:
通过动手操作,培养严谨的学习态度,并养成善于观察、善于归纳的学习习惯。
重点:正确理解正比例函数的图象及其性质。
难点:通过对正比例函数图象的观察,发现正比例函数图象的性质。
教学方法:
1、演示法———发展观察力,想象力;
2、启发法———培养学生主动学习能力;
3、形成性学习法———培养观察、归纳思维能力;
教学流程
教学环节:
教师活动——预设学生行为——学生活动
复习概念
复习定义及画函数图像的步骤,学生快速回忆已学的概念及画函数图像的步骤(抢答),积极回答问题。
例题演示
1、在同一坐标系中画出正比例函数,y=x,y=2x的图象
解:(1)列表
(2)描点
(3)连线
x … —3 —2 —1 0 1 2 3 …
y=x y=2x仔细观察,认真分析,各自说出自己所发现的规律,最后达成共识。
计算出正比例函数的值,认真观察图象。
发现规律
观察思考:比较上面三个函数图象的相同点与不同点,三个函数图像有怎样的变化规律。
共同点:
(1)都是比例系数k>0
(2)都是一条直线
(3)都过原点和点(1,k)
(4)都在一、三象限
(5)都是从左向右上升
不同点:上升的幅度不一样
归纳总结:
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点及(1,k)直线,我们称它为直线y=kx。当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随x的增大y也增大;
根据同学的发言与老师的归纳,修正自己的认识,逐渐理解正比例函数的性质以及画正比例函数图象的简单方法。发现正比例函数的性质。
规律应用
应用两点法在同一坐标系中画出y=—1、5x,y=—4x的图象,利用两点法画出函数图象,能迅速找到两个点。
发现规律
观察思考:比较上面二个函数图象的相同点与不同点,二个函数图像有怎样的变化规律。
共同点:
(1)都是比例系数k<0
(2)都是一条直线
(3)都过原点和点(1,k)
(4)都在二、四象限
(5)都是从左向右下降
不同点:下降的幅度不一样
归纳总结:
一般地,正比例函数y=kx(k是常数,k≠0)的`图象是一条经过原点及(1,k)直线,我们称它为直线y=kx。当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随x的增大y反而减小;
知识的迁移:用同样的办法发现规律。
课堂检测
1、用你认为最简单的方法画出下列函数图象。
(1)y=1、5x(2)y=-3x
2、正比例函数y=-4x的图象是过()和()两点的一条直线,图象过象限,y随x的。
3、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是。
A、m=1
B、m>1
C、m<1
D、m≥1
4、下列函数①y=5x ② y=-3x ③y= x ④y=-x中,y随x的增大而减小的是_____________。
(能根据正比例函数性质解决问题、认真做题)
小结
名称 解析式 图象特征 图象分布 函数变化情况 正比例函数
y=kx(k≠0)是经过(0,0)和(1,k)的一条直线
k>0,k<0;一、三象限Y随x的增大而增大
k>0,k<0二、四象限Y随x的增大而减小
板书设计
复习引入 描点法 画正比例函数图象 正比例函数图象性质
人教版八年级下册数学教案【篇13】
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)
问题(2):由平行四边形的`定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
人教版八年级下册数学教案【篇14】
教学目标:
1、掌握一次函数解析式的特点及意义
2、知道一次函数与正比例函数的关系
3、理解一次函数图象特点与解析式的联系规律
教学重点:
1、 一次函数解析式特点
2、 一次函数图象特征与解析式的联系规律
教学难点:
1、一次函数与正比例函数关系
2、根据已知信息写出一次函数的表达式。
教学过程:
Ⅰ.提出问题,创设情境
问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.
分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3 以上问题1和问题2表示的这两个函数有什么共同点?
Ⅱ.导入新课
上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称
y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h
(2)L=2b+16,L是b的一次函数.
(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
(5)y=60x,y是x的一次函数,也是x的正比例函数;
(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;
(7)y=50+2x,y是x的一次函数,但不是x的正比例函数
例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析 根据一次函数和正比例函数的定义,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
例4 已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y与x之间是什么函数关系;
(3)求x=2.5时,y的值.
解 (1)因为 y与x-3成正比例,所以y=k(x-3).
又因为x=4时,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
1. 2
例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的'速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).
(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.
(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.
分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.
(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.
分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.
解 在第一阶段:y=3x(0≤x≤8);
在第二阶段:y=16+x(8≤x≤16);
在第三阶段:y=-2x+88(24≤x≤44).
Ⅲ.随堂练习
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不
超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
Ⅳ.课时小结
1、一次函数、正比例函数的概念及关系。
2、能根据已知简单信息,写出一次函数的表达式。
Ⅴ.课后作业
1、已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.
(3)计算y=-4时x的值.
2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.
4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.
5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.
人教版八年级下册数学教案【篇15】
例题讲解
引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,
1、你有哪些乘车方案?
2、只租8辆车,能否一次把客人都运送走?
问题2;怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量(单位:人/辆)4530
租金(单位:元/辆)400280
(1)共需租多少辆汽车?
(2)给出最节省费用的`租车方案。
分析;
(1)要保证240名师生有车坐
(2)要使每辆汽车上至少要有1名教师
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。
设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即
y=400x+280(6-x)
化简为:y=120x+1680
讨论:
根据问题中的条件,自变量x的取值应有几种可能?
为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。
在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
方案一:
4两甲种客车,2两乙种客车
y1=120×4+1680=2160
方案二:
5两甲种客车,1辆乙种客车