教育巴巴 > 初中教案 > 八年级教案 > 数学教案 >

八年级数学教案(2023)

时间: 沐钦 数学教案

八年级数学教案都有哪些?现代高能物理达到量子物理后,有很多实验根本做不了。离数学人们想在家里做的事情不远了,所以数学拥有令人难以置信的物理力量,下面是小编为大家带来的八年级数学教案(2023)七篇,希望大家能够喜欢!

八年级数学教案(2023)

八年级数学教案(2023)(精选篇1)

一、教学目标

1.了解二次根式的意义;

2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3. 掌握二次根式的性质 和 ,并能灵活应用;

4.通过二次根式的计算培养学生的逻辑思维能力;

5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

二、教学重点和难点

重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

难点:确定二次根式中字母的取值范围.

三、教学方法

启发式、讲练结合.

四、教学过程

(一)复习提问

1.什么叫平方根、算术平方根?

2.说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义: 式子 叫做二次根式.

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

例1 当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子 在实数范围有意义?

解:略.

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

例3 当字母取何值时,下列各式为二次根式:

(1) (2) (3) (4)

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.

(2)-3x≥0,x≤0,即x≤0时, 是二次根式.

(3) ,且x≠0,∴x>0,当x>0时, 是二次根式.

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.

例4 下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

解:(1)由2a+3≥0,得 .

(2)由 ,得3a-1>0,解得 .

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

八年级数学教案(2023)(精选篇2)

《矩形》教案

教学目标:

知识与技能目标:

1.掌握矩形的概念、性质和判别条件。

2.提高对矩形的性质和判别在实际生活中的应用能力。

过程与方法目标:

1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。

2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。

情感与态度目标:

1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。

2.通过对矩形的探索学习,体会它的内在美和应用美。

教学重点:矩形的性质和常用判别方法的理解和掌握。

教学难点:矩形的性质和常用判别方法的综合应用。

教学方法:分析启发法

教具准备:像框,平行四边形框架教具,多媒体课件。

教学过程设计:

一、情境导入:

演示平行四边形活动框架,引入课题。

二、讲授新课:

1.归纳矩形的定义:

问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)

结论:有一个内角是直角的平行四边形是矩形。

2.探究矩形的性质:

(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)

结论:矩形的四个角都是直角。

(2)探索矩形对角线的性质:

让学生进行如下操作后,思考以下问题:(幻灯片展示)

在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.

①随着∠α的变化,两条对角线的长度分别是怎样变化的?

②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?

③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?

(学生操作,思考、交流、归纳。)

结论:矩形的两条对角线相等.

(3)议一议:(展示问题,引导学生讨论解决)

①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.

②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?

(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)

矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.

例解:(性质的运用,渗透矩形对角线的“化归”功能)

如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4

厘米,求BD与AD的长。

(引导学生分析、解答)

探索矩形的判别条件:(由修理桌子引出)

(5)想一想:(学生讨论、交流、共同学习)

对角线相等的平行四边形是怎样的四边形?为什么?

结论:对角线相等的平行四边形是矩形.

(理由可由师生共同分析,然后用幻灯片展示完整过程.)

(6)归纳矩形的判别方法:(引导学生归纳)

有一个内角是直角的平行四边形是矩形.

对角线相等的平行四边形是矩形.

三、课堂练习:(出示P98随堂练习题,学生思考、解答。)

四、新课小结:

通过本节课的学习,你有什么收获?

(师生共同从知识与思想方法两方面小结。)

五、作业设计:P99习题4.6第1、2、3题。

板书设计:

1.矩形

矩形的定义:

矩形的性质:

前面知识的小系统图示:

2.矩形的判别条件:

例1

课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

八年级数学教案(2023)(精选篇3)

《梯形》教案

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的.分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学教案(2023)(精选篇4)

一、教材分析

以《初中数学新课程标准》为依据,立足课本,本学期介绍二次根式、勾股定理、平行四边形、一次函数和数据的分析五章内容。本册书的5章内容涉及《数学课程标准》中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容。其中对于“实践与综合应用”领域的内容,本册书安排了课题学习,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动落实“实践与综合应用”的要求。这5章大体上采用相近内容相对集中的方式安排,第十六章、十九章基本属于“数与代数”领域,第十七章、十八章基本属于“空间与图形”领域,最后一章是“统计与概率”领域,这样安排有助于加强知识间的纵向联系。在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。

二、学情分析

1.进一步加强基础知识的数学教学,培养学习好习惯

每次数学考试,基础知识的考察占大比重。但即使是平时比较好的同学,也经常在基础题上失分。所以,在以后的教学中,要夯实基础,做到每个学生都把握好基础题不失分。培养好的解题习惯,勤于思考,多学善问。

2.增强学生的数感

在数学教学中,培养学生对数字的敏感能力。比如,在化简二次根式时,就极大地运用了数感,无形中提高了做题的速度。其次,数感的培养,有利于学生对自己所做题目的感性检验,增加学生做题的正确率,有助于提高学生的审题能力,做到选择题“快,准,好”。

3. 培养学生的初步的逻辑推理和抽象思考等基本的数学能力

部分学生缺乏空间想象能力,而这一能力对学习数学是十分重要的,对今后高中学好空间几何起着举足轻重的作用。另外,数学就是一门逻辑性极强的科学,应着力培养学生的数学逻辑性,有助于学生做好证明题和大体步骤的完整解答。

三、教材目标及要求:

1、二次根式的重点是二次根式的性质及运算,难点是二次根式的化简及运算。

2、勾股定理:会用勾股定理和逆定理解决实际问题。

3、平行四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

4、一次函数主要学习一次函数及其三种表达方式,包括正比例函数、一次函数的概念、图象、性质和应用。学会用函数的观点认识一元一次方程、一元一次不等式及二元一次方程组。本章重点内容是正比例函数、一次函数的概念、图象和性质。教学难点是培养学生初步形成数形结合的思维模式。

5、数据的分析

四、教学常规落实

严格遵守学校的各项规章制度,不迟到早退,积极参加各项活动及学习,团结协作。精心备课,备教材备学生,密切生活实际和学生实际,整合教学资源,运用好多媒体教学,利用一切可以利用的有利因素,为教学服务。上好每一节课,根据学生实际合理利用教学资源,上好每一节课。布置作业做到有的放矢,有针对性,有层次性。认真批改作业。同时对学生的作业批改及时、有效,分析并记录学生的作业情况,将他们在作业过程出现的问题作出及时反馈,针对作业中的问题确定个别辅导的学生,并对他们进行及时的指导。 积极做好学困生转化工作。对学习过程中有困难的学生,及时给予帮助,帮助他们找到应对措施,帮助他们渡过难关。

五、深入业务学习

认真学习业务理论,并做好一周一次的业务笔记,提高自己的理论水平,丰富自己的业务知识;积极参加一切课题研究活动,敢想敢干,敢于创新,不怕失败。在学习策略上及时指导学生,培养思维,方法技巧,提升能力。及时对教学活动作出反思,每周写出一至两个教学反思,真正体会自己的优缺点,做到有的放矢,进一步提高自己。充分备好每个教案,做到备学生,备教材。发挥多媒体教学优势,积极利用和制作课件,提高自己电化教学能力。

六、教学措施:

1、认真学习教育教学理论,结合落实课标理念。将学讲练和谐的课堂教学模式渗透于教学。让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。改进教学方法,充分利用多媒体,实物等创设情景进行教学,力求课堂教学的多样化、生活化和开放化,师生互动、生生互动,构建高效课堂。运用新课程标准的理念指导教学,积极更新教育理念,关心爱护学生,公平对待学生。

2、培养学生兴趣和良好习惯。兴趣是的老师,激发学生的兴趣,给学生适时介绍数学家,数学史,数学趣题,补充数学相应课外思考题,扩充资源,通过各种途径培养学生的兴趣。教育关键就是培养习惯,良好的学习习惯有助于学生稳步提高学习成绩,发展学生的非智力因素,促进学习兴趣与良好习惯培养。

3、创设和谐教学氛围。引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。

4、关注学生情感态度、学习方法、目标实施。引导学生积极归纳解题规律,引导学生一题多解,通过变式训练,培养学生透过现象看本质,提高学生举一反三的能力。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练。提高学生素质,培养学生的发散创新思维,提高学习效率,做到事半功倍。

5、做好课题研究。促进学生自主、合作,探究学习,把学生带入研究学习中,学会探究,合作,自主学习,拓展学生的知识面,培养兴趣,提高能力。开展丰富多彩的课外活动,课外调查,操作实践,以优带差,培养学生探究合作能力,师生共同提高。

6、实行分层教学。关注各类学生,作业分类分层布置,因人而异,课堂上照顾好各类学生。发挥优生的帮扶作用,打牢基础知识,提升每一个学生的能力。

八年级数学教案(2023)(精选篇5)

11.1 与三角形有关的线段

11.1.1 三角形的边

1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)

2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)

3.三角形在实际生活中的应用.(难点)

一、情境导入

出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.

教师利用多媒体演示三角形的形成过程,让学生观察.

问:你能不能给三角形下一个完整的定义?

二、合作探究

探究点一:三角形的概念

图中的锐角三角形有( )

A.2个

B.3个

C.4个

D.5个

解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.

方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.

探究点二:三角形的三边关系

【类型一】 判定三条线段能否组成三角形

以下列各组线段为边,能组成三角形的是( )

A.2c,3c,5c

B.5c,6c,10c

C.1c,1c,3c

D.3c,4c,9c

解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.

方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.

【类型二】 判断三角形边的取值范围

一个三角形的三边长分别为4,7,_,那么_的取值范围是( )

A.3<_<11 p="" b.4<_<7

C.-3<_3

解析:∵三角形的三边长分别为4,7,_,∴7-4<_<7+4,即3<_<11.故选a.< p="">

方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.

【类型三】 等腰三角形的三边关系

已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.

解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.

解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.

方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.

【类型四】 三角形三边关系与绝对值的综合

若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.

解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.

解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.

三、板书设计

三角形的边

1.三角形的概念:

由不在同一直线上的三条线段首尾顺次相接所组成的图形.

2.三角形的三边关系:

两边之和大于第三边,两边之差小于第三边.

本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.

八年级数学教案(2023)(精选篇6)

一、全章要点

1、勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

2、勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

3、勾股定理的证明 常见方法如下:

方法一: , ,化简可证.

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

四个直角三角形的面积与小正方形面积的和为

大正方形面积为 所以

方法三: , ,化简得证

4、勾股数 记住常见的勾股数可以提高解题速度,如 ; ; ; ;8,15,17;9,40,41等

二、经典训练

(一)选择题:

1. 下列说法正确的是( )

A.若 a、b、c是△ABC的三边,则a2+b2=c2;

B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;

C.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2;

D.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2.

2. △ABC的三条边长分别是 、 、 ,则下列各式成立的是( )

A. B. C. D.

3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )

A.121 B.120 C.90 D.不能确定

4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )

A.42 B.32 C.42 或 32 D.37 或 33

(二)填空题:

5.斜边的边长为 ,一条直角边长为 的直角三角形的面积是 .

6.假如有一个三角形是直角三角形,那么三边 、 、 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边 、 、 满足 ,那么这个三角形是 三角形,其中 边是 边, 边所对的角是 .

7.一个三角形三边之比是 ,则按角分类它是 三角形.

8. 若三角形的三个内角的比是 ,最短边长为 ,最长边长为 ,则这个三角形三个角度数分别是 ,另外一边的平方是 .

9.如图,已知 中, , , ,以直角边 为直径作半圆,则这个半圆的面积是 .

10. 一长方形的一边长为 ,面积为 ,那么它的一条对角线长是 .

三、综合发展:

11.如图,一个高 、宽 的大门,需要在对角线的顶点间加固一个木条,求木条的长.

12.一个三角形三条边的长分别为 , , ,这个三角形最长边上的高是多少?

13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.

14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?

15.如图,长方体的长为15,宽为10,高为20,点 离点 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 爬到点 ,需要爬行的最短距离是多少?

16.中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 m处,过了2s后,测得小汽车与车速检测仪间距离为 m,这辆小汽车超速了吗?

八年级数学教案(2023)(精选篇7)

第三十四学时:14.2.1平方差公式

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(_+1)(_—1);

(2)(m+2)(m—2)

(3)(2_+1)(2_—1);

(4)(_+5y)(_—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3_+2)(3_—2);

(2)(b+2a)(2a—b);

(3)(—_+2y)(—_—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

33967